[1]
P. Manimaran, M. R. Sanjay, P. Senthamaraikannan, M. Jawaid, S. S. Saravanakumar, R. George, Synthesis and characterization of cellulosic fiber from red banana peduncle as reinforcement for potential applications, Journal of Natural Fibers, 16 (2019) 5, 768–780.
DOI: 10.1080/15440478.2018.1434851
Google Scholar
[2]
G. Oliveux, L. O. Dandy, G. A. Leeke, Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties, Progress in Materials Science, 72 (2015) , 61–99.
DOI: 10.1016/j.pmatsci.2015.01.004
Google Scholar
[3]
P. Wambua, J. Ivens, I. Verpoest, Natural fibres: Can they replace glass in fibre reinforced plastics, Composites Science and Technology, 63 (2003) 9, 1259–1264.
DOI: 10.1016/s0266-3538(03)00096-4
Google Scholar
[4]
W. Hao, C. Tang, Y. Yuan, X. Yao, Y. Ma, Experimental study on the fiber pull-out of composites using digital gradient sensing technique, Polymer Testing, 41 (2015),239–244.
DOI: 10.1016/j.polymertesting.2014.12.005
Google Scholar
[5]
K. Hill, B. Swiecki, J. Cregger, The bio-based materials automotive value chain, Center for Automotive Research, 112 (2012) April, 1–92,.
Google Scholar
[6]
F.T. Wallenberger, N. Weston, Natural fibers, plastics and composites, Springer, Boston.
Google Scholar
[7]
S. Prakash, R.C. Paul, Mechanical Properties of Natural Fiber (Human Hair) Reinforced polymer composite, Asian Journal of Research in Social Sciences and Humanities, 6 (2016) 8, (2052).
DOI: 10.5958/2249-7315.2016.00730.9
Google Scholar
[8]
V.K. Thakur, M.K. Thakur, Processing and characterization of natural cellulose fibers/thermoset polymer composites, Carbohydrate Polymers, 109 (2014) , 102–117.
DOI: 10.1016/j.carbpol.2014.03.039
Google Scholar
[9]
V.G. Geethamma, G. Kalaprasad, G. Groeninckx, S. Thomas, Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites, Composites Part A: Applied Science and Manufacturing, 36 (2005) 11, 1499–1506.
DOI: 10.1016/j.compositesa.2005.03.004
Google Scholar
[10]
P.K. Bajpai, I. Singh, Drilling behavior of sisal fiber-reinforced polypropylene composite laminates, Journal of Reinforced Plastics and Composites, 32 (2013) 20, 1569–1576.
DOI: 10.1177/0731684413492866
Google Scholar
[11]
R. Moriana, F. Vilaplana, S. Karlsson, A. Ribes, Correlation of chemical, structural and thermal properties of natural fibres for their sustainable exploitation, Carbohydrate Polymers, 112 (2014) , 422–431.
DOI: 10.1016/j.carbpol.2014.06.009
Google Scholar
[12]
S. Biswas, Q. Ahsan, A. Cenna, M. Hasan, A. Hassan, Physical and mechanical properties of jute, bamboo and coir natural fiber, Fibers and Polymers, 14 (2013) 10, 1762–1767.
DOI: 10.1007/s12221-013-1762-3
Google Scholar
[13]
N. Reddy, Y. Yang, Extraction and characterization of natural cellulose fibers from common milkweed stems, Polymer Engineering and Science, 49 (2009) 11, 2212–2217.
DOI: 10.1002/pen.21469
Google Scholar
[14]
X. Li, L.G. Tabil, S. Panigrahi, Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review, Journal of Polymers and the Environment, 15(2007) 1, 25–33.
DOI: 10.1007/s10924-006-0042-3
Google Scholar
[15]
Manivel W. Hu, M. T. Ton-That, F. Perrin-Sarazin, J. Denault, An improved method for single fiber tensile test of natural fibers, Polymer Engineering and Science, 50 (2010) 4, 819–825.
DOI: 10.1002/pen.21593
Google Scholar
[16]
P.,S. Dhamotharan, R.J. Prakasam, G.M. Kishore, Evaluation of tensile, flexural and impact strength of gongura fiber reinforced epoxy composite, AIP Conference Proceedings, 2317 (2021).
DOI: 10.1063/5.0036356
Google Scholar
[17]
F. Ahmad, P. K. Bajpai, Evaluation of stiffness in a cellulose fiber reinforced epoxy laminates for structural applications: Experimental and finite element analysis, Defence Technology, 14 (2018) 4, 278–286.
DOI: 10.1016/j.dt.2018.05.006
Google Scholar
[18]
S. Siddika, F. Mansura, M. Hasan, Physico-mechanical properties of jute-coir fiber reinforced hybrid polypropylene composites, International Journal of Chemical, Materials Science and Engineering, 7 (2013) 1, 41–45.
DOI: 10.1007/s12221-014-1023-0
Google Scholar
[19]
A.F. M. Nor, M.T.H. Sultan, A. Hamdan, A.M.R. Azmi, K. Jayakrisna, Hybrid Composites Based on Kenaf, Jute, Fiberglass Woven Fabrics: Tensile and Impact Properties, Materials Today: Proceedings, 5 (2018) 5, 11198–11207.
DOI: 10.1016/j.matpr.2018.01.144
Google Scholar
[20]
S. Harish, D. P. Michael, A. Bensely, D. M. Lal, A. Rajadurai, Mechanical property evaluation of natural fiber coir composite, Materials Characterization, 60 (2009) 1, 44–49.
DOI: 10.1016/j.matchar.2008.07.001
Google Scholar
[21]
V. Sridharan, T. Raja, N. Muthukrishnan, Study of the Effect of Matrix, Fibre Treatment and Graphene on Delamination by Drilling Jute/Epoxy Nanohybrid Composite, Arabian Journal for Science and Engineering, 41 (2016) 5, 1883–1894.
DOI: 10.1007/s13369-015-2005-2
Google Scholar
[22]
V. Chaudhary, P. K. Bajpai, S. Maheshwari, An Investigation on Wear and Dynamic Mechanical behavior of Jute/Hemp/Flax Reinforced Composites and Its Hybrids for Tribological Applications, Fibers and Polymers, 19 (2018) 2, 403–415.
DOI: 10.1007/s12221-018-7759-6
Google Scholar
[23]
D. Ray, B. K. Sarkar, S. Das, A. K. Rana, Dynamic mechanical and thermal analysis of vinylester-resin-matrix composites reinforced with untreated and alkali-treated jute fibres, Composites Science and Technology, 62 (2002) 7–8, 911–917.
DOI: 10.1016/s0266-3538(02)00005-2
Google Scholar
[24]
N. Saba, M. Jawaid, O. Y. Alothman, M. T. Paridah, A review on dynamic mechanical properties of natural fibre reinforced polymer composites, Construction and Building Materials, 106 (2016) , 149–159.
DOI: 10.1016/j.conbuildmat.2015.12.075
Google Scholar
[25]
H. Dhakal, Z. Y. Zhang, M. Richardson, Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites, Composites Science and Technology, 67 (2007) , 1674–1683.
DOI: 10.1016/j.compscitech.2006.06.019
Google Scholar
[26]
R. A. Braga, P. A. A. Magalhaes, Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites, Materials Science and Engineering C, 56 (2015) , 269–273.
DOI: 10.1016/j.msec.2015.06.031
Google Scholar
[27]
C. Girisha, Sanjeevamurthy, G. R. Srinivas, Sisal/coconut coir natural fibers-epoxy composites: Water absorption and mechanical properties, International Journal of Engineering and Innovative Technology (IJEIT), 2 (2012) 3, 166–170,.
Google Scholar
[28]
M.J. John, R. D. Anandjiwala, Recent developments in chemical modification and characterization of natural fiber-reinforced composites, Polymer Composites, 29 (2008) 2, 187–207.
DOI: 10.1002/pc.20461
Google Scholar
[29]
R. Gunti, A.V. Ratna Prasad, A.V.S. S. K. S. Gupta, Mechanical and degradation properties of natural fiber-reinforced PLA composites: Jute, sisal, and elephant grass, Polymer Composites, 39 (2018) 4, 1125–1136.
DOI: 10.1002/pc.24041
Google Scholar
[30]
M. H. JA, M. S. A. Majid, M. Afendi, H. F. A. Marzuki, E. A. Hilmi, I. Fahmi, A. G. Gibson, Effects of water absorption on Napier grass fibre/polyester composites, Composite Structures, 144 (2016) , 138–146.
DOI: 10.1016/j.compstruct.2016.02.067
Google Scholar
[31]
P. Tripathi, V.K. Gupta, A. Dixit, R.K. Mishra, S. Sharma, Development and characterization of low cost jute, bagasse and glass fiber reinforced advanced hybrid epoxy composites, AIMS Materials Science, 5 (2018) 2, 320–337.
DOI: 10.3934/matersci.2018.2.320
Google Scholar
[32]
S.N. Rafeeq, I.M. Abdulmajeed, A. R. Saeed, Mechanical and Thermal Properties of Date Palm Fiber and Coconut Shell Particulate Filler Reinforced Epoxy Composite, Indian Journal of Applied Research, 3 (2011) 4, 89–92.
DOI: 10.15373/2249555x/apr2013/153
Google Scholar
[33]
H. Essabir, M. O. Bensalah, D. Rodrigue, R. Bouhfid, A. Qaiss, Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles, Mechanics of Materials, 93 (2016) , 134–144.
DOI: 10.1016/j.mechmat.2015.10.018
Google Scholar
[34]
T. Rajmohan, R. Vinayagamoorthy, K. Mohan, Review on effect machining parameters on performance of natural fibre–reinforced composites (NFRCs), Journal of Thermoplastic Composite Materials, 32 (2019) 9, 1282–1302.
DOI: 10.1177/0892705718796541
Google Scholar
[35]
R. Vinayagamoorthy, V. Konda, P. Tonge, T. N. Koteshwar, M. Premkumar, Surface roughness analysis and optimization during drilling on chemically treated natural fiber composite, Materials Today: Proceedings, 16 (2019) , 567–573.
DOI: 10.1016/j.matpr.2019.05.129
Google Scholar
[36]
A. Díaz-Álvarez, J. Díaz-Álvarez, C. Santiuste, M. H. Miguélez, Experimental and numerical analysis of the influence of drill point angle when drilling biocomposites, Composite Structures, 209 (2019) , 700–709.
DOI: 10.1016/j.compstruct.2018.11.018
Google Scholar
[37]
M. Sunil Kumar, K. Amarnath, M. Pradeep Kumar, Optimization of Process Parameters in Drilling of Short Fiber (KENAF) Composite, International Journal of Engineering Research, 5 (2016) 5, 153–161.
Google Scholar
[38]
S. Navaneethakrishnan, A. Athijayamani, Measurement and analysis of thrust force and torque in drilling of sisal fiber polymer composites filled with coconut shell powder, International Journal of Plastics Technology, 20 (2016) 1, 42–56.
DOI: 10.1007/s12588-016-9139-2
Google Scholar
[39]
H. Rezghi Maleki, M. Hamedi, M. Kubouchi, Y. Arao, Experimental study on drilling of jute fiber reinforced polymer composites, Journal of Composite Materials, 53 (2019) 3, 283–295.
DOI: 10.1177/0021998318782376
Google Scholar
[40]
M.M.A. Nassar, R. Arunachalam, K. I. Alzebdeh, Machinability of natural fiber reinforced composites: a review, International Journal of Advanced Manufacturing Technology, 88 (2017) 9–12, 2985–3004.
DOI: 10.1007/s00170-016-9010-9
Google Scholar
[41]
A.A. Abdul Nasir, A.I. Azmi, T.C. Lih, M.S. Abdul Majid, Critical thrust force and critical feed rate in drilling flax fibre composites: A comparative study of various thrust force models, Composites Part B: Engineering, 165(2019), 222–232.
DOI: 10.1016/j.compositesb.2018.11.134
Google Scholar
[42]
T.B. Yallew, P. Kumar, I. Singh, A study about hole making in woven jute fabric-reinforced polymer composites, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 230 (2016) 4, 888–898.
DOI: 10.1177/1464420715587750
Google Scholar
[43]
M. Suhaily, C. H. C. Hassan, A. G. Jaharah, H. Azmi, M. A. Afifah, M. K. N. Khairusshima, Study on drilling induced delamination of woven kenaf fiber reinforced epoxy composite using carbide drills, in AIP Conference Proceedings 1957 (2018) 1, p.50004.
DOI: 10.1063/1.5034334
Google Scholar
[44]
B. Gowd, Effects of Drilling Parameters on Delamination of Hemp Fiber Reinforced Composites, International Journal of Mechanical Engineering Research and Development, 2 (2012) 1, 1–8.
Google Scholar
[45]
S. Boopathi, V. Balasubramani, R. Sanjeev Kumar, and G. Robert Singh. The influence of human hair on kenaf and Grewia fiber-based hybrid natural composite material: An experimental study." Functional Composites and Structures 3, (2021) 4: 045011.
DOI: 10.1088/2631-6331/ac3afc
Google Scholar
[46]
Sampath, B., Naveenkumar, N., Sampathkumar, P., Silambarasan, P., Venkadesh, A. and Sakthivel, M., Experimental comparative study of banana fiber composite with glass fiber composite material using Taguchi method. Materials Today: Proceedings, 49, (2022), 1475-1480.
DOI: 10.1016/j.matpr.2021.07.232
Google Scholar
[47]
S. Boopathi, A. Thillaivanan, M.A. Azeem, P. Shanmugam, and V.R. Pramod, Experimental investigation on abrasive water jet machining of neem wood plastic composite. Functional Composites and Structures, 4(2), (2022), 025001.
DOI: 10.1088/2631-6331/ac6152
Google Scholar