Effect of Synthetic Materials in Reinforcement of Aluminium Matrix Composites

Article Preview

Abstract:

Aluminium matrix composite is a type of innovative technical material that have applications in aerospace, automotive, biotechnology, electronics, and a lot more. Non-metallic reinforcements can be injected into an aluminium alloy to provide advantages over base metal (Al) alloys. Better mechanical properties, improved microstructure, and corrosion resistance are the benefits that have been noticed upon reinforcements. The proportion of reinforcement, kind, size, and forms of aluminium matrix are all important factors in improving mechanical and tribological properties. Investigation in the creation of highly advanced tailored materials using liquid and solid-state processes and the impact it has on the properties and application are the subject of this work. The current research summarizes recent breakthroughs in aluminium-based composites and other particle reinforcement effects. The experiment findings revealed that strengthening the aluminum matrix with reinforcements increased mechanical properties and improves the microstructure. Also, stir casting was seen to be the most popular liquid metal approach because of its cost effectiveness and processing parameters which could easily be adjusted and monitored. It is concluded that aluminum matrix composites have greater mechanical characteristics, microstructure, and corrosion resistance than unreinforced aluminum alloys.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1076)

Pages:

3-11

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Kvande, Occurrence and production of aluminium, in: Timothy P. Hanusa. The Lightest Metals: Science and Technology from Lithium to Calcium, John Wiley & Sons Ltd, Norway, 2015, p.1–10.

Google Scholar

[2] M.J.K. Fawell, Aluminium in drinking-water: Background document for development of WHO guidelines for Drinking-Water Quality (GDWQ), (2010) 8–23.

Google Scholar

[3] W.D. Menzie, J.J. Barry, D.I. Bleiwas, E.L. Bray, T.G. Goonan, G. Matos, The global flow of aluminum from 2006 through 2025. United States Geological Survey, (2010) 1–78.

DOI: 10.3133/ofr20101256

Google Scholar

[4] S.S. Murugan, Mechanical properties of materials: Definition, testing and application, Int. J. Mod. Stud. Mech. Eng. 6 (2) 28–38.

Google Scholar

[5] O. Gbenebor, M. Abdulwahab, O. Fayomi, A. Popoola, Influence of innoculant addition and cooling medium on the mechanical properties of AA 6063-type Al-Mg-Si alloy, Chalcogenide Letters, 9 (2012) 201–211.

Google Scholar

[6] P.O. Babalola, C.A. Bolu, A.O. Inegbenebor, K.M. Odunfa, Development of aluminium matrix composites: A review 2 (2014) 1–11.

Google Scholar

[7] P.O. Babalola, C. Bolu, A.O. Inegbenebor, O. Kilanko, S.O. Oyedepo, K.M. Odunfa, Producing AA1170 based silicon carbide particulate composite through stir casting method, Asian J. Mat. Chem. 2 (2017) 115–119.

DOI: 10.14233/ajmc.2017.ajmc-p49

Google Scholar

[8] S. Nallusamy, J. Logeshwaran, Effect on aluminium metal matrix composite reinforced withnano sized silica particles, J. Metastable Nanocryst. Mat. 29 (2017) 25–34.

DOI: 10.4028/www.scientific.net/jmnm.29.25

Google Scholar

[9] T. Rajmohan, K. Palanikumar, S. Arumugam, Synthesis and characterization of sintered hybrid aluminium matrix composites reinforced with nanocopper oxide particles and microsilicon carbide particles, Composites Part B: Eng. 59 (2014) 43–49.

DOI: 10.1016/j.compositesb.2013.10.060

Google Scholar

[10] M.H. Rahman, H.M.M. Rashed, Characterization of silicon carbide reinforced aluminum matrix composites, Procedia Eng. 90 (2014) 103–109.

DOI: 10.1016/j.proeng.2014.11.821

Google Scholar

[11] S.O. Akinwamide, S.M. Lemika, B.A. Obadele, O.J. Akinribide, B.T. Abe, P.A. Olubambi, Study of microstructural and mechanical properties of stir cast Al (SiC-Mg-TiFe) composite, Fluid Dynam. Mat. Proc. 15 (2019) 15–26.

DOI: 10.32604/fdmp.2019.04761

Google Scholar

[12] M. Launey, R. Ritchie, On the fracture toughness of advanced materials, Advanced Materials, 21 (2009) 2103–2110.

DOI: 10.1002/adma.200803322

Google Scholar

[13] M.F. Ibrahim, H.R. Ammar, A.M. Samuel, M.S. Soliman, F.H. Samuel, On the impact toughness of Al-15 vol.% B4C metal matrix composites, Composites Part B: Eng. 79 (2015) 83–94.

DOI: 10.1016/j.compositesb.2015.04.018

Google Scholar

[14] P. Sri Ram Murthy, Y. Seetha Rama Rao, Impact on mechanical properties of hybrid aluminum metal matrix composites, Int. J. Eng. Adv. Tech. 8 (2019) 1638–1645.

Google Scholar

[15] B. Dupen, Applied strength of materials for engineering technology, Applied Strength of Materials for Engineering Technology, 6 (2014) 152.

Google Scholar

[16] G.B. Veeresh Kumar, R. Pramod, R. Hari Kiran Reddy, P. Ramu, B. Kunaal Kumar, P. Madhukar, M. Chavali, F. Mohammad, S.K. Khiste, Investigation of the tribological characteristics of aluminum 6061-reinforced titanium carbide metal matrix composites, Nanomaterials 11 (2021) 3039.

DOI: 10.3390/nano11113039

Google Scholar

[17] J. Karloopia, Mozammil, S.P. Jha, Influence of in situ titanium diboride particulate reinforcement on mechanical properties of aluminum–silicon based metal matrix composites, JOM 72 (2020) 2927-2936.

DOI: 10.1007/s11837-020-04245-x

Google Scholar

[18] R. Keshavamurthy, S. Mageri, G. Raj, B. Naveenkumar, P.M. Kadakol, K. Vasu, Microstructure and Mechanical Properties of Al7075-TiB 2 in-situ composite. Res. J. Mat. Sci. 1 (2013) 6–10.

Google Scholar

[19] C. Suryanarayana, Microstructure : An Introduction, in: N. Eswara Prasad, R.J. Wanhill, Aerospace Materials and Material Technologies: Vol. 2, Springer, 2016, 105–123.

Google Scholar

[20] P. Sharma, S. Sharma, D. Khanduja, A study on microstructure of aluminium matrix composites. J. Asian Ceram. Soc. 3 (2015) 240–244.

DOI: 10.1016/j.jascer.2015.04.001

Google Scholar

[21] A. Kalkanlı, S. Yılmaz, Synthesis and characterization of aluminum alloy 7075 reinforced with silicon carbide particulates. Mat. Des. 29 (2008) 775–780.

DOI: 10.1016/j.matdes.2007.01.007

Google Scholar

[22] A. Popoola, O. Olorunniwo, O. Ige, Corrosion resistance through the application of anti- corrosion coatings. In: Developments in Corrosion Protection, IntechOpen, 2014, pp.241-270.

DOI: 10.5772/57420

Google Scholar

[23] R. Michalik, Influence of heat treatment on corrosion resistance of ZnAl40Ti2Cu alloy. Arch. Met. Mat. 63 (2018) 883–888.

Google Scholar

[24] R.T. Loto, A. Adeleke, Corrosion of aluminum alloy metal matrix composites in neutral chloride solutions, J. Fail. Anal. Prev. 16 (2016) 874–885.

DOI: 10.1007/s11668-016-0157-3

Google Scholar

[25] F. Toptan, A. Alves, I. Kerti, E. Ariza, L. Rocha, Corrosion and tribocorrosion behaviour of Al-Si-Cu-Mg alloy and its composites reinforced with B4C particles in 0.05 M NaCl solution, Wear, 306 (2013) 27–35.

DOI: 10.1016/j.wear.2013.06.026

Google Scholar

[26] B. Bobić, S. Mitrović, M. Babić, I. Bobić, Corrosion of metal-matrix composites with aluminium alloy substrate, Trib. Ind. 32 (2010) 3–11.

Google Scholar

[27] O.O. Joseph, K. Babaremu, Agricultural waste as a reinforcement particulate for aluminum metal matrix composite (AMMCs): A Review, Fibres 7 (2019) 33.

DOI: 10.3390/fib7040033

Google Scholar

[28] P.O. Babalola, A.O. Inegbenebor, C.A. Bolu, S.I. John, Comparison of the mechanical characteristics of aluminium SiC composites cast in sand and metal moulds, Int. J. Mech. Eng. Tech 10 (2019) 1671-1681.

Google Scholar

[29] E. Ananiadis, K.T. Argyris, T.E. Matikas, A.K. Sfikas, A.E. Karantzalis, Microstructure and corrosion performance of aluminium matrix composites reinforced with refractory high-entropy alloy particulates, Appl. Sci. 11 (2021) 1300.

DOI: 10.3390/app11031300

Google Scholar

[30] M.B.R. Silva, V. Roche, T.M. Blanco, V.N. Hoang, O. Balancin, J.M. Cabrera, A.M.J. Junior, Effect of Processing Conditions on the Microstructure, Mechanical Properties, and Corrosion Behavior of Two Austenitic Stainless Steels for Bioimplant Applications, Metals 10 (2020) 1311.

DOI: 10.3390/met10101311

Google Scholar