Evaluation of the Corrosion, Microstructural and Mechanical Characteristics of Cu-Al-Zn-Sn High Entropy Alloys

Article Preview

Abstract:

In a search for solutions to minimize the problem of aluminium cookware leaching, pitting, wear and cracking off due to thermal stress, high entropy alloys (HEAs) have become profitable materials. Cu-Al-Zn-Sn HEAs were produced, ad properties compared with that of the existing aluminium cookware material. The ASTM G102 standard was followed to investigate the corrosion rate (CR) of these materials in 3.65 wt.% NaCl (potentiodynamic polarization technique). Following ASTM A-370 standard, Vickers hardness (VH) of the materials were examined using a nanoindenter. The CETR reciprocating sliding tribometer was used to investigate the wear rate (WR) in line with ASTM G99 procedure. With the aid of a thermo-gravimetric analyzer, the MTS (maximum temperature of stability) of the materials was examined. The microstructural analysis of the materials was conducted using scanning electron microscope (SEM) and X-ray diffractometer (XRD). For the existing aluminium cookware material sample, the CR, VH, WR and MTS of the were 0.9327 mm year-1, 56.25 mN mm-2, 1.888 × 10-5 mm3 N-1 m-1 and 610 °C, respectively. For the HEA samples, the CR, VH, WR and MTS ranged from 0.1708-0.4080 mm/year, 159.99-398.18 mN mm-2, 1.565 × 10-5-1.944 × 10-5 mm3 N-1 m-1 and 680-690 oC, respectively. The microstructural examination of the HEA samples revealed the existence of better morphology, higher texture quality and enhanced microstructural homogeneity compared to the aluminium (Al) sample. The dendrites observed on the HEA samples on the surface are indications that the samples exhibited superior mechanical properties, and could be employed for advanced applications. Key words: Corrosion; Wear; Thermo-gravimetric; Wear; Microstructure; Temperature

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1076)

Pages:

45-62

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Gunen, A., Ceritbinmez, F., Patel, K., Akhtar, M. A., Mukherjee, S., Kanca, E., & Karakas, M. S. (2022). WEDM machining of MoNbTaTiZr refractory high entropy alloy. CIRP Journal of Manufacturing Science and Technology, 38, 547-559.

DOI: 10.1016/j.cirpj.2022.05.021

Google Scholar

[2] Arif, Z. U., Khalid, M. Y., ur Rehman, E., Ullah, S., Atif, M., & Tariq, A. (2021). A review on laser cladding of high-entropy alloys, their recent trends and potential applications. Journal of Manufacturing Processes, 68, 225-273.

DOI: 10.1016/j.jmapro.2021.06.041

Google Scholar

[3] Meghwal, A., Anupam, A., Murty, B.S., Berndt, C.C., Kottada, R.S., & Ang, A. S. M. (2020). Thermal spray high-entropy alloy coatings: a review. Journal of Thermal Spray Technology, 29(5), 857-893.

DOI: 10.1007/s11666-020-01047-0

Google Scholar

[4] George, E. P., Curtin, W. A., & Tasan, C. C. (2020). High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Materialia, 188, 435-474.

DOI: 10.1016/j.actamat.2019.12.015

Google Scholar

[5] George, E. P., Raabe, D., & Ritchie, R. O. (2019). High-entropy alloys. Nature reviews materials, 4(8), 515-534.

DOI: 10.1038/s41578-019-0121-4

Google Scholar

[6] Fayomi, O. S. I., & Akande, I. G. (2019). Corrosion mitigation of aluminium in 3.65% NaCl medium using hexamine. Journal of Bio-and Tribo-Corrosion, 5(1), 1-7.

DOI: 10.1007/s40735-018-0214-4

Google Scholar

[7] Basu, I., & De Hosson, J. T. M. (2020). Strengthening mechanisms in high entropy alloys: fundamental issues. Scripta Materialia, 187, 148-156.

DOI: 10.1016/j.scriptamat.2020.06.019

Google Scholar

[8] Zhang, X., Chen, Y., & Hu, J. (2018). Recent advances in the development of aerospace materials. Progress in Aerospace Sciences, 97, 22-34.

DOI: 10.1016/j.paerosci.2018.01.001

Google Scholar

[9] Patel, N. S., Pavlík, V., & Boca, M. (2017). High-temperature corrosion behavior of superalloys in molten salts–a review. Critical Reviews in Solid State and Materials Sciences, 42(1), 83-97.

DOI: 10.1080/10408436.2016.1243090

Google Scholar

[10] Sun, Y., Zhang, T., Li, C., Xu, K., & Li, Y. (2020). Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting. Journal of Materials Chemistry A, 8(27), 13415-13436.

DOI: 10.1039/d0ta05038e

Google Scholar

[11] Schmid, A., Mori, G., Hönig, S., Weil, M., Strobl, S., & Haubner, R. (2018). Comparison of the high-temperature chloride-induced corrosion between duplex steel and Ni based alloy in presence of H2S. Corrosion Science, 139, 76-82.

DOI: 10.1016/j.corsci.2018.04.042

Google Scholar

[12] Yushchenko, K. A., Zviagintseva, A. V., Kapitanchuk, L. M., & Gakh, I. S. (2018). The role of actively diffusing impurities of sulfur and oxygen in ductility-dip cracking susceptibility of Ni-Cr-Fe welds. Journal of Achievements in Materials and Manufacturing Engineering, 89(2), 49-55.

DOI: 10.5604/01.3001.0012.7108

Google Scholar

[13] Michi, R. A., Plotkowski, A., Shyam, A., Dehoff, R. R., & Babu, S. S. (2022). Towards high-temperature applications of aluminium alloys enabled by additive manufacturing. International Materials Reviews, 67(3), 298-345.

DOI: 10.1080/09506608.2021.1951580

Google Scholar

[14] Otitoju, T. A., Okoye, P. U., Chen, G., Li, Y., Okoye, M. O., & Li, S. (2020). Advanced ceramic components: Materials, fabrication, and applications. Journal of industrial and engineering chemistry, 85, 34-65.

DOI: 10.1016/j.jiec.2020.02.002

Google Scholar

[15] Jiang, S. M., Li, H. Q., Ma, J., Xu, C. Z., Gong, J., & Sun, C. (2010). High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating II: oxidation and hot corrosion. Corrosion Science, 52(7), 2316-2322.

DOI: 10.1016/j.corsci.2010.03.032

Google Scholar

[16] Muthu, S. M., Bharathi, C. M., Gukhan, N. V., Kumar, S. V., Kannan, M. V., Arivarasu, M., ... & Arivazhagan, N. (2018). Hot Corrosion Studies on Dissimilar Weldments C-22 and AISI 316L in the Molten Salt K2SO4+ 60% wt NaCl Environment. Materials Today: Proceedings, 5(5), 13340-13346.

DOI: 10.1016/j.matpr.2018.02.326

Google Scholar

[17] Kvasnytska, Y. H., Ivaskevych, L. М., Balytskyi, О. І., Maksyuta, І. І., & Myalnitsa, H. P. (2020). High-Temperature Salt Corrosion of a Heat-Resistant Nickel Alloy. Materials Science, 56(3), 432-440.

DOI: 10.1007/s11003-020-00447-5

Google Scholar

[18] Ham, G. S., Kim, Y. K., Na, Y. S., & Lee, K. A. (2021). Effect of Ti addition on the microstructure and high-temperature oxidation property of AlCoCrFeNi high-entropy alloy. Metals and Materials International, 27(1), 156-165.

DOI: 10.1007/s12540-020-00708-7

Google Scholar

[19] Diao, H., Santodonato, L. J., Tang, Z., Egami, T., & Liaw, P. K. (2015). Local structures of high-entropy alloys (HEAs) on atomic scales: An overview. The Journal of the Minerals, Metals and Materials Society, 67(10), 2321-2325.

DOI: 10.1007/s11837-015-1591-5

Google Scholar

[20] Qiu, Y., Gibson, M. A., Fraser, H. L., & Birbilis, N. (2015). Corrosion characteristics of high entropy alloys. Materials Science and Technology, 31(10), 1235-1243.

DOI: 10.1179/1743284715y.0000000026

Google Scholar

[21] Liu, Y. X., Cheng, C. Q., Shang, J. L., Rui, W. A. N. G., Peng, L. I., & Jie, Z. H. A. O. (2015). Oxidation behavior of high-entropy alloys AlxCoCrFeNi (x= 0.15, 0.4) in supercritical water and comparison with HR3C steel. Transactions of Nonferrous Metals Society of China, 25(4), 1341-1351.

DOI: 10.1016/s1003-6326(15)63733-5

Google Scholar

[22] Shi, Y., Yang, B., Xie, X., Brechtl, J., Dahmen, K. A., & Liaw, P. K. (2017). Corrosion of Al xCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corrosion Science, 119, 33-45.

DOI: 10.1016/j.corsci.2017.02.019

Google Scholar

[23] Santodonato, L. J., Zhang, Y., Feygenson, M., Parish, C. M., Gao, M. C., Weber, R. J., ... & Liaw, P. K. (2015). Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nature communications, 6(1), 1-13.

DOI: 10.1038/ncomms6964

Google Scholar

[24] Seifi, M., Li, D., Yong, Z., Liaw, P. K., & Lewandowski, J. J. (2015). Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys. The Journal of the Minerals, Metals and Materials Society, 67(10), 2288-2295.

DOI: 10.1007/s11837-015-1563-9

Google Scholar

[25] Li, Z., Pradeep, K. G., Deng, Y., Raabe, D., &Tasan, C. C. (2016). Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature, 534(7606), 227-230.

DOI: 10.1038/nature17981

Google Scholar

[26] Duan, H., Wu, Y., Hua, M., Yuan, C., Wang, D., Tu, J., ... & Li, J. (2013). Tribological properties of AlCoCrFeNiCu high-entropy alloy in hydrogen peroxide solution and in oil lubricant. Wear, 297(1-2), 1045-1051.

DOI: 10.1016/j.wear.2012.11.014

Google Scholar

[27] Nong, Z. S., Lei, Y. N., & Zhu, J. C. (2018). Wear and oxidation resistances of AlCrFeNiTi-based high entropy alloys. Intermetallics, 101, 144-151.

DOI: 10.1016/j.intermet.2018.07.017

Google Scholar

[28] Joseph, J., Haghdadi, N., Shamlaye, K., Hodgson, P., Barnett, M., & Fabijanic, D. (2019). The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures. Wear, 428, 32-44. #.

DOI: 10.1016/j.wear.2019.03.002

Google Scholar

[29] Fayomi, O. S. I., Akande, I. G., Oluwole, O. O., & Daramola, D. (2018). Effect of water-soluble chitosan on the electrochemical corrosion behaviour of mild steel. Chemical Data Collections, 17, 321-326.

DOI: 10.1016/j.cdc.2018.10.006

Google Scholar

[30] Zhou, Z., Liu, B., Guo, W., Fu, A., Duan, H., & Li, W. (2021). Corrosion behavior and mechanism of FeCrNi medium entropy alloy prepared by powder metallurgy. Journal of Alloys and Compounds, 867, 159094, 1-9.

DOI: 10.1016/j.jallcom.2021.159094

Google Scholar

[31] Lattanzi, L., Fabrizi, A., Fortini, A., Merlin, M., & Timelli, G. (2017). Effects of microstructure and casting defects on the fatigue behavior of the high-pressure die-cast AlSi9Cu3 (Fe) alloy. Procedia Structural Integrity, 7, 505-512.

DOI: 10.1016/j.prostr.2017.11.119

Google Scholar

[32] Cao, L., Sun, F., Chen, T., Tang, Y., & Liao, D. (2018). Quantitative prediction of oxide inclusion defects inside the casting and on the walls during cast-filling processes. International Journal of Heat and Mass Transfer, 119, 614-623.

DOI: 10.1016/j.ijheatmasstransfer.2017.11.127

Google Scholar

[33] Das, S., & Robi, P. S. (2020). A novel refractory WMoVCrTa high-entropy alloy possessing fine combination of compressive stress-strain and high hardness properties. Advanced Powder Technology, 31(12), 4619-4631.

DOI: 10.1016/j.apt.2020.10.008

Google Scholar

[34] Barron, P. J., Carruthers, A. W., Fellowes, J. W., Jones, N. G., Dawson, H., & Pickering, E. J. (2020). Towards V-based high-entropy alloys for nuclear fusion applications. Scripta Materialia, 176, 12-16.

DOI: 10.1016/j.scriptamat.2019.09.028

Google Scholar

[35] Nam, H., Park, C., Moon, J., Na, Y., Kim, H., & Kang, N. (2019). Laser weldability of cast and rolled high-entropy alloys for cryogenic applications. Materials Science and Engineering: A, 742, 224-230.

DOI: 10.1016/j.msea.2018.11.009

Google Scholar

[36] Xu, Q., Chen, D., Tan, C., Bi, X., Wang, Q., Cui, H., ... & Chen, R. (2021). NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure. Journal of Materials Science & Technology, 60, 1-7.

DOI: 10.1016/j.jmst.2020.04.050

Google Scholar

[37] George, E. P., Raabe, D., & Ritchie, R. O. (2019). High-entropy alloys. Nature Reviews Materials, 4(8), 515-534.

DOI: 10.1038/s41578-019-0121-4

Google Scholar

[38] Fan, Z., Zhong, W., Jin, K., Bei, H., Osetsky, Y. N., & Zhang, Y. (2021). Diffusion-mediated chemical concentration variation and void evolution in ion-irradiated NiCoFeCr high-entropy alloy. Journal of Materials Research, 36(1), 298-310.

DOI: 10.1557/s43578-020-00071-8

Google Scholar

[39] Sogabe, R., Goto, Y., Abe, T., Moriyoshi, C., Kuroiwa, Y., Miura, A., ... & Mizuguchi, Y. (2019). Improvement of superconducting properties by high mixing entropy at blocking layers in BiS2-based superconductor REO0. 5F0. 5BiS2. Solid State Communications, 295, 43-49.

DOI: 10.1016/j.ssc.2019.04.001

Google Scholar

[40] Hsiao, Y. T., Tung, C. H., Lin, S. J., Yeh, J. W., & Chang, S. Y. (2020). Thermodynamic route for self-forming 1.5 nm V-Nb-Mo-Ta-W high-entropy alloy barrier layer: Roles of enthalpy and mixing entropy. Acta Materialia, 199, 107-115.

DOI: 10.1016/j.actamat.2020.08.029

Google Scholar

[41] Wei, S., Kim, S. J., Kang, J., Zhang, Y., Zhang, Y., Furuhara, T., ... & Tasan, C. C. (2020). Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nature Materials, 19(11), 1175-1181.

DOI: 10.1038/s41563-020-0750-4

Google Scholar

[42] Xiang, S., Luan, H., Wu, J., Yao, K. F., Li, J., Liu, X., ... & Li, Q. (2019). Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique. Journal of Alloys and Compounds, 773, 387-392.

DOI: 10.1016/j.jallcom.2018.09.235

Google Scholar

[43] Fall, A., Monajati, H., Khodabandeh, A., Fesharaki, M. H., Champliaud, H., & Jahazi, M. (2019). Local mechanical properties, microstructure, and microtexture in friction stir welded Ti-6Al-4V alloy. Materials Science and Engineering: A, 749, 166-175.

DOI: 10.1016/j.msea.2019.01.077

Google Scholar

[44] Cornide, J., Dahlborg, U., Leong, Z., Dominguez, L. A., Juraszek, J., Jouen, S., ... & Calvo-Dahlborg, M. (2015). Structure and Properties of Some CoCrFeNi-Based High Entropy Alloys. TMS 2015 144th Annual Meeting & Exhibition, 1147-1155.

DOI: 10.1007/978-3-319-48127-2_139

Google Scholar

[45] Holder, C. F., & Schaak, R. E. (2019). Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano , 13 (7) 7359–7365.

DOI: 10.1021/acsnano.9b05157

Google Scholar

[46] Akpan, B. J., Akande, I. G., Fayomi, O. S. I., & Oluwasegun, K. M. (2022). Investigation of hardness, microstructure and anti-corrosion properties of Zn-ZnO composite coating doped unripe plantain peel particles. Case Studies in Chemical and Environmental Engineering, 5, 1-7.

DOI: 10.1016/j.cscee.2022.100187

Google Scholar

[47] Himabindu, B., Devi, N. L., & Kanth, B. R. (2021). Microstructural parameters from X-ray peak profile analysis by Williamson-Hall models; A review. Materials Today: Proceedings, 47, 4891-4896.

DOI: 10.1016/j.matpr.2021.06.256

Google Scholar

[48] Feijoo, I., Cabeza, M., Merino, P., Pena, G., Perez, M. C., Cruz, S., & Rey, P. (2019). Estimation of crystallite size and lattice strain in nano-sized TiC particle-reinforced 6005A aluminium alloy from X-ray diffraction line broadening. Powder Technology, 343, 19-28.

DOI: 10.1016/j.powtec.2018.11.010

Google Scholar

[49] Sathiyamoorthi, P., Basu, J., Kashyap, S., Pradeep, K. G., & Kottada, R. S. (2017). Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite. Materials & Design, 134, 426-433.

DOI: 10.1016/j.matdes.2017.08.053

Google Scholar

[50] Winnicki, M., Małachowska, A., Baszczuk, A., Rutkowska-Gorczyca, M., Kukla, D., Lachowicz, M., & Ambroziak, A. (2017). Corrosion protection and electrical conductivity of copper coatings deposited by low-pressure cold spraying. Surface and Coatings Technology, 318, 90-98.

DOI: 10.1016/j.surfcoat.2016.12.101

Google Scholar