Removal of Lead Ions (Pb2+) Using Acid-Activated Clay from East Kalimantan

Article Preview

Abstract:

This study aims to determine the optimal conditions of acid-activated clay adsorbent in adsorption of Pb2+ metal ions. Clay was taken around East Kalimantan, Karang Joang. This adsorbent was prepared by mixing clay into a solution of KMnO4, H2SO4 and HCl successively, and stirred for 4 hours at a temperature of 80°C. The morphology and active groups of the adsorbent were analyzed using BET and FTIR. The variables of this study were the mass of the adsorbent 0.1, 0.3 and 0.5 grams and the contact time of 5, 30 and 55 minutes. Adsorption capacity of this adsorbent was analyzed using Atomic Absorption Spectrophotometry (AAS). The results of this study indicate that the optimum mass of adsorbent is 0.1 g, and contact time is 30 minutes. Adsorption capacity of Pb2+ metal ions by acid-activated clay adsorbent at the optimum condition of 0.1 gram was 23,585 mg/g and adsorption energy was 2,338 kJ/mol. Meanwhile, at the optimum condition for 30 minutes, the adsorption capacity was 0.771 mg/L, and the adsorption energy was 2.895 kJ/mol. So that the adsorption process in this study can be known, namely physical adsorption because the adsorption energy value is less than 40 kJ/mol.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1076)

Pages:

91-100

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.M. Sukma, Abd. Gafur, H.H. Abbas, Biokonsentrasi logam berat timbal, arsen pada air dan ikan sungai tallo kota Makassar tahun 2020, WoPHJ. 01 (2020) 304-316.

DOI: 10.33096/woph.v1i4.132

Google Scholar

[2] P. Novita, S. Yanto, P. Patang, Pengaruh habitat mangrove terhadap penurunan tingkat cemaran timbal di muara sungai tallo, JPTP. 5 (2019) 69-82.

DOI: 10.26858/jptp.v5i0.8560

Google Scholar

[3] G.A.Y. Dewi, S.A. Samson, Usman, Analisis/kandungan logam berat Pb dan Cd di muara sungai manggar/Balikpapan, J. Ecotrophic. 12 (2018) 122-124.

DOI: 10.24843/ejes.2018.v12.i02.p02

Google Scholar

[4] M. Osinska, Removal of lead(II), copper(II), cobalt(II) and nickel(II) ions from aqueous solutions using carbon gels, J. Sol-Gel Sci. Technol. 81 (2017) 678–692.

DOI: 10.1007/s10971-016-4256-0

Google Scholar

[5] D.M. Manohar, B.F. Noeline, T.S. Anirudhan, Adsorption performance of alpillared bentonite clay for the removal of cobalt(II) from aqueous phase, J. App. Clay Sci. 31 (2006) 194-206.

DOI: 10.1016/j.clay.2005.08.008

Google Scholar

[6] N. Sasria, Fahmiati, Mashuni, Ni2+ adsorption performance/ofximmobilized Saccharomyces/cerevisiae/in fractionated clay from Southeast Sulawesi, J. Phys. Conf. Ser. 1726 (2021) 1-11.

DOI: 10.1088/1742-6596/1726/1/012021

Google Scholar

[7] I.F. Nucifera, T.A. Zaharah, I. Syahbanu, Uji stabilitas kitosan-kaolin sebagai adsorben logam berat Cu(II) dalam air, Jurnal Kimia Khatulistiwa. 5 (2016) 43-49.

Google Scholar

[8] Y. Prasetiowati dan T. Koeastiari, Kapasitas adsorpsi bentonit teknis sebagai adsorben Ion Cd2+, UNESA J. Chem. 3 (2014) 194-200.

Google Scholar

[9] H.A. Patel, R.S. Somani, H.C. Bajaj, R.V. Jasra, Synthesis and characterization of organic bentonite using Gujarat and Rajasthan clays, Curren Sci. 92 (2007) 1004-1009.

Google Scholar

[10] M.R. Filayati, Rusmini, Pengaruh massa bentonit teraktivasi H2SO4 terhadap daya adsorpsi iodium, UNESA J. Chem. 1 (2012) 59-67.

DOI: 10.26740/icaj.v1n1.p10-17

Google Scholar

[11] M. Pentrak, V. Hronsky, H. Palkova, P. Uhlik, P. Komadel, J. Madejova, Alteration of fine fraction of bentonite from Kopernica (Slovakia) under acid treatment: a combined XRD, FTIR, MAS NMR and AES study, Appl. Clay Sci. 163 (2018) 204–213.

DOI: 10.1016/j.clay.2018.07.028

Google Scholar

[12] P. Soleman, Identifikasi gugus fungsi dan kandungan mineral lempung Pacitan dengan spektroskopi infra red (IR) x-ray diffraction (XRD), J. Photon. 2 (2011) 31-35.

DOI: 10.37859/jp.v2i1.124

Google Scholar

[13] H. Sastrohamidjojo, Spektroskopi Inframerah, Liberty, Yogyakarta, (1992).

Google Scholar

[14] K.D. Nugrahaningtyas, D.M. Widjonarko, Daryani, Y. Haryanti, Kajian Aktivasi H2SO4 terhadap proses pemilaran Al2O3 pada lempung alam Pacitan, Alchemy J. Penelitian Kimia. 12 (2016) 190–203.

DOI: 10.20961/alchemy.12.2.1312.190-203

Google Scholar

[15] Nurhasni, F. Firdiyano, Q. Sya'ban, Penyerapan ion aluminium dan besi dalam larutan sodium silikat menggunakan karbon aktif, J. Kimia Valensi. 2 (2012) 516-525.

DOI: 10.15408/jkv.v2i4.269

Google Scholar

[16] A. Hayuwardini dan B. Mulyani, Pemanfaatan arang ampas tebu (Bagasse) sebagai adsorben larutan campuran ion Pb2+ dan Cu2+, SN-KPK XIII. 13 (2022) 110-120.

Google Scholar

[17] L. Emelda, S.M. Putri, S.B. Ginting, Pemanfaatan zeolit alam teraktivasi untuk adsorpsi logam Cr3+, J. Rekayasa Kimia dan Lingkungan. 9 (2013) 166-172.

DOI: 10.23955/rkl.v9i4.1229

Google Scholar

[18] P. Pranoto, T. Martini, D.A. Rachmawati, Karakterisasi dan uji efektivitas allophane-like untuk adsorpsi ion logam tembaga (Cu), ALCHEMY J. Penelitian Kimia. 14 (2018) 202-218.

DOI: 10.20961/alchemy.14.2.18538.202-218

Google Scholar

[19] K. Beroeh, Pengaruh suhu karbonisasi terhadap daya serap karbon aktif dengan aktivator ZnCl2 dari serbuk gergaji kayu jati, J. Teknik Kimia UMJ. (2004).

DOI: 10.21009/0305020215

Google Scholar