Immobilization of Dithizone on Magnetic Zeolite in Less Toxic Medium and its Application as Adsorbent Cd(II) Ion in Water

Article Preview

Abstract:

One of the most dangerous pollutants frequently found in environment are heavy metal ions. Industrial effluents especially those rich in heavy metals are potential pollution source for aquatic environment. In this study, magnetic modification of activated natural zeolite (MZ) was prepared and then used as host for immobilization of dithizone in less toxic alkaline medium. The obtained material, dithizone-immobilized magnetic zeolite (MZD) was applied as adsorbents for adsorption of heavy metal Cd (II) ion in water. The mechanism of interaction between the adsorbent and Cd (II) ion was studied by sequential desorption experiments of Cd (II) ion using different solvents. The adsorbents were characterized by FTIR and XRD to confirm the successful magnetization and immobilization of dithizone on the activated natural zeolite. Results of adsorption study shows that adsorption capacity of MZ and MZD adsorbents towards Cd (II) ion are 17.8 and 37.5 mg g-1, respectively. The adsorption of Cd (II) on both adsorbents is best described by pseudo 2nd order reaction and follow Langmuir isotherm adsorption model. Sequential desorption experiments has revealed that Cd (II) adsorption on MZ is dominated by electrostatic interaction while that on MZD is mostly occurred through complexation. The synthesized materials is promising to be used as adsorbent of heavy metals because it can magnetically be separated and selectively adsorbed heavy metals with higher capacity.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1076)

Pages:

133-142

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Zendehdel, M. Ramezani, B. Shoshtari-Yeganeh, G. Cruciani, and A. Salmani, Simultaneous removal of Pb(II), Cd(II) and bacteria from aqueous solution using amino-functionalized Fe3O4/NaP zeolite nanocomposite, Environ. Technol. 28 (2018) 3689-3704.

DOI: 10.1080/09593330.2018.1485750

Google Scholar

[2] M. Kavand, P. Eslami, and L. Razeh, The adsorption of cadmium and lead ions from the synthesis wastewater with the activated carbon: Optimization of the single and binary systems, J. Water Process Eng. 34 (2020) 101151.

DOI: 10.1016/j.jwpe.2020.101151

Google Scholar

[3] Y. Tao, C. Zhang, and T. Lü, Removal of Pb (II) ions from wastewater by using polyethyleneimine-functionalized Fe3O4 magnetic nanoparticles, App. Sci. 10 (2020) 948.

DOI: 10.3390/app10030948

Google Scholar

[4] B. M. Kaličanin, Determination of very toxic metal: Cadmium in natural water samples, Desalination, 249 (2009) 58-62.

DOI: 10.1016/j.desal.2009.03.006

Google Scholar

[5] S. Wang and Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J. 156 (2010) 11–24.

Google Scholar

[6] T. Pambudi, E. T. Wahyuni, and M. Mudasir, Recoverable adsorbent of natural zeolite / Fe3O4 for removal of Pb (II) in water, J. Mater. Environ. Sci. 11 (2020) 69–78.

Google Scholar

[7] M. Yuan, T. Xie, G. Yan, Q. Chen, L. Wang, Effective removal of Pb2+ from aqueous solutions by magnetically modified zeolite, Powder Technol. 332 (2018) 234–241.

DOI: 10.1016/j.powtec.2018.03.043

Google Scholar

[8] M. Mudasir, K. Karelius, N. H. Aprilita, E. T. Wahyuni, Adsorption of mercury(II) on dithizone-immobilized natural zeolite, J. Environ. Chem. Eng. 4 (2016) 1839–1849.

DOI: 10.1016/j.jece.2016.03.016

Google Scholar

[9] B. N. Huda, E. T. Wahyuni, M. Mudasir, Eco-friendly immobilization of dithizone on coal bottom ash for the adsorption of lead(II) ion from water, Results Eng. 10 (2021) 100221.

DOI: 10.1016/j.rineng.2021.100221

Google Scholar

[10] M. Mudasir, R. A. Baskara, A. Suratman, K. S. Yunita, R. Perdana, W. Puspitasari, Simultaneous adsorption of Zn(II) and Hg(II) ions on selective adsorbent of dithizone-immobilized bentonite in the presence of Mg(II) Ion, J. Environ. Chem. Eng. 8 (2020) 104002.

DOI: 10.1016/j.jece.2020.104002

Google Scholar

[11] D. E. Aminy, B. Rusdiarso, M. Mudasir, Adsorption of Cd(II) ion from the solution using selective adsorbent of dithizone-modified commercial bentonite, Int. J. Environ. Sci. Technol. 19 (2022) 6399–6410.

DOI: 10.1007/s13762-021-03570-1

Google Scholar

[12] J. Jujarama, K. Wijaya, M. Shidiq, M. Fahrurrozi, and S. Suheryanto, Synthesis of biogasoline from used palm cooking oil through catalytic hydrocracking by using Cr-activated natural zeolite as catalyst, Asian J. Chem. 26 (2014) 5033–5038.

DOI: 10.14233/ajchem.2014.16299

Google Scholar

[13] L. C. A. Oliveira, D. I. Petkowicz, A. Smaniotto, and S. B. C. Pergher, Magnetic zeolites: A new adsorbent for removal of metallic contaminants from water, Water Res. 38 (2004) 3699–3704.

DOI: 10.1016/j.watres.2004.06.008

Google Scholar

[14] A. Mockovciakova, Z. Orolinova, M. Matik, P. Hudec, and E. Kmecova, Iron oxide contribution to the modification of natural zeolite, Acta Montan. Slovaca. 11 (2006) 353–357.

Google Scholar

[15] K. L. Tan and B. H. Hameed, Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions, J. Taiwan Inst. Chem. Eng. 74 (2017) 25–48.

DOI: 10.1016/j.jtice.2017.01.024

Google Scholar

[16] K. Y. Foo and B. H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156 (2010) 2–10.

Google Scholar

[17] A. Mesdaghinia, A. Azari, R. N. Nodehi, K. Yaghmaeian, A. K. Bharti, S. Agarwal, V. K. Gupta, K. Sharafi, Removal of phthalate esters (PAEs) by zeolite/Fe3O4: Investigation on the magnetic adsorption separation, catalytic degradation and toxicity bioassay, J. Mol. Liq. 233 (2017) 378–390.

DOI: 10.1016/j.molliq.2017.02.094

Google Scholar

[18] A. J. M. de Man, S. Ueda, M. J. Annen, M. E. Davis, R. A. van Santen, The stability and vibrational spectra of three-ring containing zeolitic silica polymorphs, Zeolites. 12 (1992) 789–800.

DOI: 10.1016/0144-2449(92)90051-p

Google Scholar

[19] A. Gaffer, A. A. Al Kahlawy, D. Aman, Magnetic zeolite-natural polymer composite for adsorption of chromium (VI), Egypt. J. Pet. 26 (2017) 995–999.

DOI: 10.1016/j.ejpe.2016.12.001

Google Scholar

[20] S. Jorfi, M. R. Shooshtarian, S. Pourfadakari, Decontamination of cadmium from aqueous solutions using zeolite decorated by Fe3O4 nanoparticles: adsorption modeling and thermodynamic studies, Int. J. Environ. Sci. Technol. 17 (2019) 273–286.

DOI: 10.1007/s13762-019-02350-2

Google Scholar

[21] S. K. Milonjić, M. M. Kopečni, and Z. E. Ilić, The point of zero charge and adsorption properties of natural magnetite, J. Radioanal. Chem. 78 (1983) 15–24.

DOI: 10.1007/bf02519745

Google Scholar

[22] K. S. Padmavathy, G. Madhu, P. V. Haseena, A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr (VI)) from wastewater by magnetite nanoparticles, Procedia Technol. 24 (2016) 585–594.

DOI: 10.1016/j.protcy.2016.05.127

Google Scholar

[23] Y. Li, Q. Yue, and B. Gao, Adsorption kinetics and desorption of Cu(II) and Zn(II) from aqueous solution onto humic acid, J. Hazard. Mater. 178 (2010) 455–461.

DOI: 10.1016/j.jhazmat.2010.01.103

Google Scholar

[24] H. Radnia, A. A. Ghoreyshi, H. Younesi, G. D. Najafpour, Adsorption of Fe(II) ions from aqueous phase by chitosan adsorbent: equilibrium, kinetic, and thermodynamic studies, Desalin. Water Treat. 50 (2012) 348–359.

DOI: 10.1080/19443994.2012.720112

Google Scholar

[25] K. T. Basuki and M. Muzakky, Adsorption of Am-241, Cs-137 and Sr-90 radionuclides with bentonite-humic acid immobilized yield, Indones. J. Chem. 10 (2010) 1–7.

DOI: 10.22146/ijc.21472

Google Scholar

[26] U. Farooq, J. A. Kozinski, M. A. Khan, M. Athar, Biosorption of heavy metal ions using wheat based biosorbents–a review of the recent literature, Bioresour. Technol. 101 (2010) 5043–5053.

DOI: 10.1016/j.biortech.2010.02.030

Google Scholar

[27] I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc. 38 (1916) 2221–2295.

DOI: 10.1021/ja02268a002

Google Scholar

[28] R. G. Pearson, Hard and soft acids and bases, HSAB, Part 1: Fundamental principles, J. Chem. Educ. 45 (1968) 581.

DOI: 10.1021/ed045p581

Google Scholar

[29] A. W. Adamson, Physical Chemistry of Surfaces, fifth ed., John Wiley & Sons, New York, (1990).

Google Scholar

[30] V. B. A. S. Putri, Adsorpsi ion Cu(II) dan Cd(II) pada abu layang batubara yang diimobilisasi ditizon, Thesis, Universitas Gadjah Mada, (2019).

Google Scholar