Antibacterial Properties of Ag3PO4 Particles on Bacteriostatic Behavior of Escherichia coli

Article Preview

Abstract:

The aim of this work was to investigate the influences of different concentrations of Ag3PO4 aqueous dispersion by measuring the bacteriostatic characteristic against bacteria E. coli. The Ag3PO4 particles were successfully synthesized by precipitation method. Then, the morphological, structural and chemical compositional analyses were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), respectively. All these analyses confirmed the formation of Ag3PO4 particles with the shape of nearly spherical with a size of 100 – 700 nm. Meanwhile, Kirby-Bauer disk diffusion susceptibility test was chosen to determine the sensitivity of E. coli to antibacterial compounds in Ag3PO4 particles. The results showed that the antibacterial ability was significantly improved by increasing the concentration of Ag3PO4 aqueous dispersion, and the best concentration was 600 mg /mL. This study suggested that Ag3PO4 particles can be exploited as an effective candidate for antibacterial agents.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1076)

Pages:

143-150

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Progress on sanitation and drinking water: 2015 update and MDG assessment on https://www.who.int/publications/i/item/9789241509145.

Google Scholar

[2] S. R. Thakare and S. M. Ramteke, Fast and regenerative photocatalyst material for the disinfection of E. coli from water: Silver nanoparticle anchor on MOF-5, Catal. Commun. 102 (2017) 21–25.

DOI: 10.1016/j.catcom.2017.06.008

Google Scholar

[3] E. Bahcelioglu, D. Doganay, S. Coskun, H. E. Unalan, and T. H. Erguder, A Point-of-Use (POU) Water Disinfection: Silver Nanowire Decorated Glass Fiber Filters, J. Water Process Eng. 38 (2020) 101616.

DOI: 10.1016/j.jwpe.2020.101616

Google Scholar

[4] L. Beneduce, G. Spano, and S. Massa, Escherichia coli O157:H7 general characteristics, isolation and identification techniques, Ann. Microbiol. 53(4) (2003) 511–527.

Google Scholar

[5] D. Mara and N. J. Horan, Handbook of Water and Wastewater Microbiology. Elsevier, London, (2003).

Google Scholar

[6] S. J. Cavalieri, G. A. Bohach, and I. S. Snyder, Escherichia coli alpha-hemolysin: characteristics and probable role in pathogenicity, Microbiol. Rev. 48(4) (1984) 326–343.

DOI: 10.1128/mr.48.4.326-343.1984

Google Scholar

[7] J.-W. Xu, Z.-D. Gao, K. Han, Y. Liu, and Y.-Y. Song, Synthesis of Magnetically Separable Ag3PO4/TiO2/Fe3O4 Heterostructure with Enhanced Photocatalytic Performance under Visible Light for Photoinactivation of Bacteria, ACS Appl. Mater. Interfaces. 6(17) (2014) 15122–15131.

DOI: 10.1021/am5032727

Google Scholar

[8] Y. Ge, W. Shen, X. Wang, H. Feng, and L. Feng, Synthesis and bactericidal action of Fe3O4/AgO bifunctional magnetic-bactericidal nanocomposite, Colloids Surfaces A Physicochem. Eng. Asp. 563(5) (2019) 160–169.

DOI: 10.1016/j.colsurfa.2018.11.063

Google Scholar

[9] M.-L. Kung, M.-H. Tai, P.-Y. Lin, D.-C. Wu, W.-J. Wu, B.-W. Yeh, H.-S. Hung, C.-H. Kuo, Y.-W. Chen, S.-L. Hsieh, Silver decorated copper oxide (Ag@CuO) nanocomposite enhances ROS-mediated bacterial architecture collapse, Colloids Surfaces B Biointerfaces. 155 (2017) 399–407.

DOI: 10.1016/j.colsurfb.2017.04.041

Google Scholar

[10] Y.-H. Lyu, F. Wei, T. Zhang, L. Luo, Y. Pan, X. Yang, H. Yu, S. Zhou, Different antibacterial effect of Ag3PO4/TiO2 heterojunctions and the TiO2 polymorphs, J. Alloys Compd. 876 (2021) 160016.

DOI: 10.1016/j.jallcom.2021.160016

Google Scholar

[11] L. Tian, X. Xian, X. Cui, H. Tang and X. Yang, Fabrication of modified g-C3N4 nanorod/Ag3PO4 nanocomposites for solar-driven photocatalytic oxygen evolution from water splitting, Appl. Surf. Sci. 430 (2018) 301–308.

DOI: 10.1016/j.apsusc.2017.07.185

Google Scholar

[12] G. Panthi, R. Ranjit, H.-Y. Kim, and D. Das Mulmi, Size dependent optical and antibacterial properties of Ag3PO4 synthesized by facile precipitation and colloidal approach in aqueous solution, Optik. 156 (2018) 60–68.

DOI: 10.1016/j.ijleo.2017.10.162

Google Scholar

[13] P. J. Mafa, R. Patala, B. B. Mamba, D. Liu, J. Gui, and A. T. Kuvarega, Plasmonic Ag3PO4/EG photoanode for visible light-driven photoelectrocatalytic degradation of diuretic drug, Chem. Eng. J., 393 (2019) 124804.

DOI: 10.1016/j.cej.2020.124804

Google Scholar

[14] I. Ahmed, D. Ready, M. Wilson, and J. C. Knowles, Antimicrobial effect of silver-doped phosphate-based glasses, J. Biomed. Mater. Res. Part A, 79 (2006) 618–626.

DOI: 10.1002/jbm.a.30808

Google Scholar

[15] P. Taheri and A. Khajeh-Amiri, Antibacterial cotton fabrics via immobilizing silver phosphate nanoparticles onto the chitosan nanofiber coating, Int. J. Biol. Macromol. 158 (2020) 282–289.

DOI: 10.1016/j.ijbiomac.2020.04.258

Google Scholar

[16] S. Saengmee-Anupharb, T. Srikhirin, B. Thaweboon, S. Thaweboon, T. Amornsakchai, S. Dechkunakorn, A. Kamaguchi, Antimicrobial effects of silver zeolite, silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms, Asian Pac. J. Trop. Biomed. 3 (1) (2013) 47–52.

DOI: 10.1016/s2221-1691(13)60022-2

Google Scholar

[17] J. Seyfi, M. Panahi-Sarmad, A. OraeiGhodousi, V. Goodarzi, H. A. Khonakdar, A. Asefnejad and S. Shojaei, Antibacterial superhydrophobic polyvinyl chloride surfaces via the improved phase separation process using silver phosphate nanoparticles, Colloids Surf. B-Biointerfaces. 183 (2019) 110438.

DOI: 10.1016/j.colsurfb.2019.110438

Google Scholar

[18] M. N. Gallucci, J. C. Fraire, A. P. V. Ferreyra Maillard, P. L. Páez, I. M. Aiassa Martínez, E. V. Pannunzio Miner, E. A. Coronado and P. R. Dalmasso, Silver nanoparticles from leafy green extract of Belgian endive (Cichorium intybus L. var. sativus): Biosynthesis, characterization, and antibacterial activity, Mater. Lett. 197 (2017) 98–101.

DOI: 10.1016/j.matlet.2017.03.141

Google Scholar