Removal of Methyl Orange Using Hybrid Spherical Silica Adsorbents

Article Preview

Abstract:

This study investigated the potential of adsorption behaviour of methyl orange onto hybrid spherical silica adsorbent. Removal of dye has been a problem worldwide and the study of removing dye through adsorption method is quite limited. This study aims to synthesize and characterize spherical silica (SSi) adsorbent and evaluate its adsorption capacity of it. The spherical silica adsorbent (SSi) was prepared using oil-in-water (o/w) emulsion polymerization modification where Tetraethyl Orthosilicate (TEOS) acts as the silica precursor. The physicochemical properties of SiNs were characterized using Fourier transform infrared (FTIR), field emission scanning (FESEM), nitrogen adsorption/desorption analysis (NAD), and transmission electron microscopy (TEM). The batch adsorption study for the methyl orange removal parameters such as pH (2-10 ) and agitation time (0-180 minutes). The experimental adsorption data were further evaluated using several adsorption kinetic models, namely pseudo-first-order, pseudo-second-order and Elovich kinetic models. The diffusion kinetics model includes the Weber-Morris plot, Fick’s Law equation and Boyd plot. The result shows that the spherical silica (SSi) adsorbent at pH 2 has the highest adsorption capacity amongst another adsorbent towards methyl orange which is 45.05 mg/g. Furthermore, the equilibrium time for methyl orange adsorption onto SSi was 120 min. The data fitted into a pseudo-second-order kinetic model indicating chemical adsorption, limited by film diffusion.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1076)

Pages:

151-162

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Bulut, H. J. J. o. d. s. Karaer, and technology, Adsorption of methylene blue from aqueous solution by crosslinked chitosan/bentonite composite,, vol. 36, no. 1, pp.61-67, (2015).

DOI: 10.1080/01932691.2014.888004

Google Scholar

[2] T. Jing et al., Highly effective removal of 2, 4-dinitrophenolic from surface water and wastewater samples using hydrophilic molecularly imprinted polymers,, vol. 21, no. 2, pp.1153-1162, (2014).

DOI: 10.1007/s11356-013-2007-0

Google Scholar

[3] G. Bayramoglu, B. Altintas, M. Y. J. J. o. C. T. Arica, and Biotechnology, Synthesis and characterization of magnetic beads containing aminated fibrous surfaces for removal of Reactive Green 19 dye: kinetics and thermodynamic parameters,, vol. 87, no. 5, pp.705-713, (2012).

DOI: 10.1002/jctb.3693

Google Scholar

[4] B. Gao, X. Cha, T. Chen, and L. J. J. o. E. C. E. Fan, Designing and preparing of acid dye surface-imprinted material for effective removal of acid dyes from water,, vol. 3, no. 1, pp.277-285, (2015).

DOI: 10.1016/j.jece.2014.10.017

Google Scholar

[5] Z. Carmen and S. Daniela, Textile organic dyes-characteristics, polluting effects and separation/elimination procedures from industrial effluents-a critical overview. IntechOpen Rijeka, (2012).

DOI: 10.5772/32373

Google Scholar

[6] A. Anouzla, Y. Abrouki, S. Souabi, M. Safi, and H. J. J. o. H. M. Rhbal, Colour and COD removal of disperse dye solution by a novel coagulant: application of statistical design for the optimization and regression analysis,, vol. 166, no. 2-3, pp.1302-1306, (2009).

DOI: 10.1016/j.jhazmat.2008.12.039

Google Scholar

[7] V. Kasperchik, A. Yaskevich, and A. J. P. C. Bil'Dyukevich, Wastewater treatment for removal of dyes by coagulation and membrane processes,, vol. 52, no. 7, pp.545-556, (2012).

DOI: 10.1134/s0965544112070079

Google Scholar

[8] B. K. Körbahti, K. Artut, C. Geçgel, and A. J. C. E. J. Özer, Electrochemical decolorization of textile dyes and removal of metal ions from textile dye and metal ion binary mixtures,, vol. 173, no. 3, pp.677-688, (2011).

DOI: 10.1016/j.cej.2011.02.018

Google Scholar

[9] C. Sahunin, J. Kaewboran, and M. J. r. Hunsom, Treatment of textile dyeing wastewater by photo oxidation using UV/H,, vol. 22, p.23, (2006).

Google Scholar

[10] S. J. E. E. S. Mondal, Methods of dye removal from dye house effluent—an overview,, vol. 25, no. 3, pp.383-396, (2008).

DOI: 10.1089/ees.2007.0049

Google Scholar

[11] C.-H. Tsai, W.-C. Chang, D. Saikia, C.-E. Wu, and H.-M. J. J. o. h. m. Kao, Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes,, vol. 309, pp.236-248, (2016).

DOI: 10.1016/j.jhazmat.2015.08.051

Google Scholar

[12] T. Ataei-Germi, A. J. J. o. c. Nematollahzadeh, and i. science, Bimodal porous silica microspheres decorated with polydopamine nano-particles for the adsorption of methylene blue in fixed-bed columns,, vol. 470, pp.172-182, (2016).

DOI: 10.1016/j.jcis.2016.02.057

Google Scholar

[13] N. Saman, N. A. A. Kamal, J. W. P. Lye, and H. J. A. P. T. Mat, Synthesis and characterization of CTAB-silica nanocapsules and its adsorption behavior towards Pd (II) ions in aqueous solution,, vol. 31, no. 8, pp.3205-3214, (2020).

DOI: 10.1016/j.apt.2020.06.007

Google Scholar

[14] K. Choi et al., Chromium removal from aqueous solution by a PEI-silica nanocomposite,, vol. 8, no. 1, pp.1-10, (2018).

Google Scholar

[15] L. Bois et al., Functionalized silica for heavy metal ions adsorption,, vol. 221, no. 1-3, pp.221-230, (2003).

Google Scholar

[16] M. Anbia, S. A. Hariri, and S. J. A. S. S. Ashrafizadeh, Adsorptive removal of anionic dyes by modified nanoporous silica SBA-3,, vol. 256, no. 10, pp.3228-3233, (2010).

DOI: 10.1016/j.apsusc.2009.12.010

Google Scholar

[17] S. Schlichter, K. Sapag, M. Dennehy, and M. J. J. o. e. c. e. Alvarez, Metal-based mesoporous materials and their application as catalysts for the degradation of methyl orange azo dye,, vol. 5, no. 5, pp.5207-5214, (2017).

DOI: 10.1016/j.jece.2017.09.039

Google Scholar

[18] S. Asuha, X. Zhou, and S. J. J. o. h. m. Zhao, Adsorption of methyl orange and Cr (VI) on mesoporous TiO2 prepared by hydrothermal method,, vol. 181, no. 1-3, pp.204-210, (2010).

DOI: 10.1016/j.jhazmat.2010.04.117

Google Scholar

[19] B. S. Rathore, N. P. S. Chauhan, M. K. Rawal, S. C. Ameta, and R. J. P. B. Ameta, Chitosan–polyaniline–copper (II) oxide hybrid composite for the removal of methyl orange dye,, vol. 77, no. 9, pp.4833-4850, (2020).

DOI: 10.1007/s00289-019-02994-7

Google Scholar

[20] L. Wang et al., Stable organic–inorganic hybrid of polyaniline/α-zirconium phosphate for efficient removal of organic pollutants in water environment,, vol. 4, no. 5, pp.2686-2692, (2012).

DOI: 10.1021/am300335e

Google Scholar

[21] Y.-S. J. J. o. h. m. Ho, Review of second-order models for adsorption systems,, vol. 136, no. 3, pp.681-689, (2006).

Google Scholar

[22] A. S. Dhmees, N. M. Khaleel, and S. A. J. E. j. o. p. Mahmoud, Synthesis of silica nanoparticles from blast furnace slag as cost-effective adsorbent for efficient azo-dye removal,, vol. 27, no. 4, pp.1113-1121, (2018).

DOI: 10.1016/j.ejpe.2018.03.012

Google Scholar

[23] H. S. Jamwal, S. Kumari, G. S. Chauhan, N. Reddy, and J.-H. J. J. o. e. c. e. Ahn, Silica-polymer hybrid materials as methylene blue adsorbents,, vol. 5, no. 1, pp.103-113, (2017).

DOI: 10.1016/j.jece.2016.11.029

Google Scholar

[24] M. Mirzaie, A. Rashidi, H.-A. Tayebi, M. E. J. J. o. C. Yazdanshenas, and E. Data, Removal of anionic dye from aqueous media by adsorption onto SBA-15/polyamidoamine dendrimer hybrid: adsorption equilibrium and kinetics,, vol. 62, no. 4, pp.1365-1376, (2017).

DOI: 10.1021/acs.jced.6b00917

Google Scholar

[25] W. J. Weber Jr and J. C. J. J. o. t. s. e. d. Morris, Kinetics of adsorption on carbon from solution,, vol. 89, no. 2, pp.31-59, (1963).

Google Scholar

[26] L. Wang and A. J. J. o. h. m. Wang, Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite,, vol. 160, no. 1, pp.173-180, (2008).

DOI: 10.1016/j.jhazmat.2008.02.104

Google Scholar

[27] K. G. Bhattacharyya and S. S. J. A. Gupta, Adsorption of Fe (III) from water by natural and acid activated clays: studies on equilibrium isotherm, kinetics and thermodynamics of interactions,, vol. 12, no. 3, pp.185-204, (2006).

DOI: 10.1007/s10450-006-0145-0

Google Scholar

[28] K. Johari, N. Saman, S. Song, J. Heng, and H. J. C. E. C. Mat, Study of Hg (II) removal from aqueous solution using lignocellulosic coconut fiber biosorbents: equilibrium and kinetic evaluation,, vol. 201, no. 9, pp.1198-1220, (2014).

DOI: 10.1080/00986445.2013.806311

Google Scholar

[29] A. Adamson, G. Boyd, and L. J. J. A. C. S. Myers, The exchange adsorption of ions from aqueous solutions by organic zeolites; kinetics,, vol. 69, no. 11, p.2836, (1947).

DOI: 10.1021/ja01203a066

Google Scholar

[30] M. Toor and B. J. C. E. J. Jin, Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye,, vol. 187, pp.79-88, (2012).

DOI: 10.1016/j.cej.2012.01.089

Google Scholar