[1]
A. Bagchi, Design of landfills and integrated solid waste management. Hoboken, New Jersey. John Wiley and Son, Inc., (2004).
Google Scholar
[2]
M. Nakhaei, V. Amiri, K. Rezaei and F. Moosaei, An investigation of the potential environmental contamination from the leachate of the Rasht waste disposal site in Iran, Bull. Eng. Geol. Environ. 74 (2015) 233-246.
DOI: 10.1007/s10064-014-0577-9
Google Scholar
[3]
H. Ahmad, M, Mohamad and N. Ismail, A batch study on removal of heavy metals using laterite soil-Pressmud in landfill leachate. Iranica Journal of Energy and Environment 7 (2), (2016) 144-148.
DOI: 10.5829/idosi.ijee.2016.07.02.09
Google Scholar
[4]
M. Aljaradin and K.M. Persson, The emission potential from municipal solid waste landfill in Jordan, Journal of Ecological Engineering, 17 (1), (2016) 38-48.
DOI: 10.12911/22998993/61188
Google Scholar
[5]
P.J. Solan, T.P. Curran, V.A. Dodd, R. Wilkes, M. Heavey and G. Dennison, Assessment of the suitability of alternative landfill daily cover materials, Eleventh International Waste Management and Landfill Symposium, Margherita di Pula, Cagliari, Italy (2007).
Google Scholar
[6]
J.N. Shaw, Iron and aluminum oxide characterization for highly-weathered Alabama ultisols. Communications in Soil Science and Plant Analysis 32 (1-2), (2001) 49-64.
DOI: 10.1081/css-100102992
Google Scholar
[7]
S.K. Maji, A. Pal, T. Pal, Arsenic removal from real-life groundwater by adsorption on lateritic soil, Journal of Hazardous Materials 151 (2008) 811-820.
DOI: 10.1016/j.jhazmat.2007.06.060
Google Scholar
[8]
Syafalni, H.K. Lim, N. Ismail, I. Abustan, M.F. Murshed and A. Ahmad Treatment of landfill leachate by using lateritic soil as a natural coagulant. Journal of Environmental Management 112 (2012) 353-359.
DOI: 10.1016/j.jenvman.2012.08.001
Google Scholar
[9]
A.A Raheem, O.O. Falola and K.J. Adeyeye, Production and testing of lateritic interlocking blocks. Journal of Construction in Developing Countries 17 (1), (2012) 33-48.
Google Scholar
[10]
T.H. Ko, H. Chu, H.P. Lin, C.Y. Peng, Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas. Journal of Hazardous Materials B136 (2006) 776-783.
DOI: 10.1016/j.jhazmat.2006.01.010
Google Scholar
[11]
BS1377 Method of test soil civil engineering purposes, British Standard Institution, London (1990).
Google Scholar
[12]
ASTM, American Society for Testing and Materials ASTM Standard Proctor Compaction, ASTM D698 (1984).
Google Scholar
[13]
EPA Procedure Manual for groundwater monitoring at solid waste disposal facilities. EPA-530/600-611. US Environmental Protection Agency, Cincinnati off 296 (1987).
Google Scholar
[14]
USEPA U.S. Environmental Protection Agency, Engineering Bulletin Slurry Walls. EPA 540/S-92/008 (1992).
Google Scholar
[15]
P. Makuleke and V.M. Ngole-Jeme, Soil Heavy Metal Distribution with Depth around a Closed Landfill and Their Uptake by Datura stramonium. Applied and Environmental Soil Science 2020 (2020) 1-14.
DOI: 10.1155/2020/8872475
Google Scholar
[16]
R. Nagarajan, S. Thirumalaisamy and E. Lakshumanan, Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of erode city, Tamil Nadu, India. Iranian Journal of Environmental Health Sciences & Engineering 9 (35), (2012) 1-12.
DOI: 10.1186/1735-2746-9-35
Google Scholar
[17]
A. Sujeeth, an investigation into the geotechnical engineering properties of laterite soils in Nilai, Malaysia, Dissertation of BSc. Thesis, Faculty of Science, Technology, Engineering & Mathematics, Inti International University, Malaysia, (2015).
Google Scholar
[18]
N.A. Kasim, N.A.C. Azmi, M. Mukri, S.N.A.M. Noor, Effect on physical properties of laterite soil with difference percentage of sodium bentonite, AIP Conference Proceedings 1875, (2017) 030003-1–030003-6.
DOI: 10.1063/1.4998374
Google Scholar
[19]
C. Brendan and O'Kelly, Review of recent developments and understanding of atterberg limits determinations, Geotechnics 1, (2021) 59–75.
DOI: 10.3390/geotechnics1010004
Google Scholar
[20]
B.M. Das, and K. Sobhan, Principles of geotechnical engineering. 8 th Edition. 200 First Stamford Place, Suite 400 Stamford, CT 06902 United States of America, (2014).
Google Scholar
[21]
J. James and P.K. Pandian, Plasticity, swell-shrink, and microstructure of phosphogypsum admixed lime stabilized expansive soil, Advances in Civil Engineering, (2016) 1-10.
DOI: 10.1155/2016/9798456
Google Scholar
[22]
B.G. Borude and K.A. Patil, Changes in properties of soil due to disposal of waste, International Journal of Engineering Research and Technology 5 (4), (2016) 92-94.
Google Scholar
[23]
O.L. Anjolaiya, Sorption behavior of metal contaminants in clay minerals, soils and matrices: understanding the influence of organic matter, pH, ionic strength and mineralogy. PhD Thesis, Loughborough University, (2014).
Google Scholar
[24]
A. Tomczyk, Z. Sokołowska and P. Boguta, Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects, Rev Environ Sci Biotechnol 19, (2020) 191–215.
DOI: 10.1007/s11157-020-09523-3
Google Scholar
[25]
M.R. Selamat, R. N. Rosli and M.H. Ramli, Properties of laterite soils from sources near Nibong Tebal, Malaysia, Comput. Res. Prog. Appl. Sci. Eng., 05 (02), (2019) 44-51.
Google Scholar
[26]
C.H. Benson and D.E. Daniel, Minimum thickness of compacted soil liners: I. Stochastic Models. Journal Geotechnical Engineering ASCE 120, (1994) 129-151.
DOI: 10.1061/(asce)0733-9410(1994)120:1(129)
Google Scholar
[27]
K. Samuding, Sifat fizik dan kimia tanah baki di Johor Tenggara. Disertasi Tesis MSc., Jabatan Geology, Universiti Kebangsaan Malaysia, Malaysia, (1999).
DOI: 10.17576/jkukm-2021-33(3)-19
Google Scholar
[28]
K. Samuding, Enhancement of natural local soil to minimize the migration of contaminants using empty fruit bunch (EFB) in Taiping Landfill. Dissertation of PhD. Thesis, School of Civil Engineering, Universiti Sains Malaysia, Malaysia (2010).
DOI: 10.35940/ijitee.j1081.0881019
Google Scholar
[29]
A. Marto, F. Kasim, Characterisation of malaysian residual soils for geotechnical and construction engineering. Project Report. Jabatan Geoteknik dan Pengangkutan, Fakulti Kejuruteraan Awam, Universiti Teknologi Malaysia, (2003).
DOI: 10.17576/jkukm-2021-33(4)-24
Google Scholar
[30]
O. Duggan and S.J. Allen, Study of the physical and chemical characteristics of a range of chemically treated, lignite based carbons. Science Technology 35 (7), (1997) 21-27.
DOI: 10.2166/wst.1997.0256
Google Scholar
[31]
L. Xiaomin, T. Yanru, C. Xiuju, L. Dandan, L. Fang and S. Wenjing, Preparation and evaluation of orange peel cellulose adsorbents for effective removal of cadmium, zinc, cobalt and nickel, Colloid and Surface: Physicochemical and Engineering Aspects 317, (2008) 512-521.
DOI: 10.1016/j.colsurfa.2007.11.031
Google Scholar
[32]
J.L. Hanson, N. Yesiller, S.A.V. Stockhausen, S.AV. and W.W. Wong, Compaction characteristics of municipal solid waste. Journal of Geotechnical and Geoenvironmental Engineering 136 (8), (2010) 1095-1102.
DOI: 10.1061/(asce)gt.1943-5606.0000324
Google Scholar
[33]
P.V.V. Satyanarayana, K.L. Chandra, T.H. Nandan and S.S.S.V. Gopala Raju, A study on the utilization of recycled aggregate and crusher dust mixes as sub-base and base materials. International Journal of Civil Engineering and Technology 4 (5), (2013) 122-129.
Google Scholar
[34]
M.L. Allan and L.E. Kukacka, Permeability of micro cracked fibre reinforced containment barriers, Waste Management 15 (2), (1995) 171-177.
DOI: 10.1016/0956-053x(95)00011-n
Google Scholar
[35]
J. He, F. Li, Y. Li and X. Cui, Modified sewage sludge as temporary landfill cover material. Water Science and Engineering 8 (3), (2015) 257-262.
DOI: 10.1016/j.wse.2015.03.003
Google Scholar