Conducting Behavior of Bischalcone Derivatives

Article Preview

Abstract:

With the scope of bischalcone-based copolyesters can be used as semiconductors; two copolyesters were synthesized by the solution polycondensation method. The Bischalcone diol was analyzed by UV-Visible, FTIR, NMR (1H, 13C NMR) spectroscopy. Using the UV-Visible data, the bandgap energy of the Bischalcone diol was calculated and found to be 2.82 eV. The Physico-chemical properties like Inherent viscosity and refractive index of the copolyesters were determined. Spectral studies such as FTIR, 1H and 13C NMR spectroscopy. The thermal property of the copolyesters was analyzed by differential scanning calorimetry. The melting temperature of the PTMI is observed at 320°C, and PTMT exhibits 360°C. The PTMT shows higher stability than the PTMT copolyester. The highest ionic conductivity for PTMI is 3.50 x 10-4 (S cm-1). The PTMT copolyester shows -0.0035 KJ mol-1 whereas the PTMI copolyester shows 0.0005 KJ mol-1. The electrochemical impedance analysis and conductivity measurement were examined for the two copolyesters expecting semi-conducting behavior which can be a good candidate for the optoelectronics application.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1079)

Pages:

103-113

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Shaojun Guo, Shaojun Dong, Erkang Wang. Three-Dimensional Pt-on-Pd Bimetallic and Advanced Nanoelectrocatalyst for Nanosheet: Facile Synthesis and Used as Nanodendrites Supported on Graphene Methanol Oxidation.ACS Nano., 4(1), (2009), 547-555.

DOI: 10.1021/nn9014483

Google Scholar

[2] Shen Y, Wan M. In situ doping polymerization of pyrrole with sulfonic acid as a dopant. Synth Met. 96(2): ( 1998), 127–32.

DOI: 10.1016/s0379-6779(98)00076-9

Google Scholar

[3] Shinde SS, Gund GS, Kumbhar VS, Patil BH, Lokhande CD. Novel chemical synthesis of polypyrrole thin-film electrodes for supercapacitor application. Eur Polym J. 49(11): (2013) 3734–3749.

DOI: 10.1016/j.eurpolymj.2013.07.032

Google Scholar

[4] Joshi M, Adak B. Advances in nanotechnology-based functional, smart, and intelligent textiles: A review -Comprehensive Nanoscience, and Nanotechnology. Elsevier. 1–5, (2019), 253–290.

DOI: 10.1016/b978-0-12-803581-8.10471-0

Google Scholar

[5] Shen L, Li Z, Wu X, Zhou W, Yang J, Song Y. Ultrafast broadband nonlinear optical properties and excited-state dynamics of two bis-chalcone derivatives. RSC Adv. 10(26): (2020),15199–15205.

DOI: 10.1039/d0ra01592j

Google Scholar

[6] Nohut Maşlakcı, N., Biçer, A., Turgut Cin, G., Uygun Öksüz, A. Electrochromic properties of some bis-chalcone derivatives-based nanofibers. Journal of Applied Polymer Science., 135(12), (2018), 25–30.

DOI: 10.1002/app.46010

Google Scholar

[7] Asiri, A. M., Khan, S. A. Synthesis, characterization and optical properties of mono- and bis-chalcone. Materials Letters., 65(12), (2011), 1749–1752.

DOI: 10.1016/j.matlet.2011.03.059

Google Scholar

[8] Pandeya SN, Sriram D, Nath G, Declercq E. Synthesis, antibacterial, antifungal and anti-HIV activities of Schiff and Mannich bases derived from isatin derivatives and N-[4-(4'-chlorophenyl)thiazol-2-yl] thiosemicarbazide. Eur J Pharm Sci., 9(1): (1999), 25–31.

DOI: 10.1016/s0928-0987(99)00038-x

Google Scholar

[9] Ducki S, Forrest R, Hadfield JA, Kendall A, Lawrence NJ, McGown AT, et al. Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorganic Med Chem Lett. 8(9): .(1998), 1051–1060.

DOI: 10.1016/s0960-894x(98)00162-0

Google Scholar

[10] Konieczny MT, Konieczny W, Sabisz M, Skladanowski A, Wakieć R, Augustynowicz-Kopeć E, et al. Acid-catalyzed synthesis of oxathiolone fused chalcones. Comparison of their activity toward various microorganisms and human cancer cells line. Eur J Med Chem. 42(5): (2007), 729–733.

DOI: 10.1016/j.ejmech.2006.12.014

Google Scholar

[11] Christodoulides, D.N., Khoo, I.C., Salamo, G.J., Stegeman, G.I., Van Stryland, E.W., Nonlinear refraction and absorption: mechanisms and magnitudes, Adv. Opt. Photonics. 2 (1). (2010), 60–200.

DOI: 10.1364/aop.2.000060

Google Scholar

[12] Yang, Y., Wu, X., Jia, J., Shen, L., Zhou, W., Yang, J., Song, Y. Investigation of ultrafast optical nonlinearities in novel bis-chalcone derivatives. Optics and Laser Technology, 123(10), (2020), 105903.

DOI: 10.1016/j.optlastec.2019.105903

Google Scholar

[13] Jin, H., Li, X., Tan, T., Wang, S., Xiao, Y. Dyes and Pigments Electrochromic properties of novel chalcones containing triphenylamine moiety. Dyes and Pigments, 106, (2014), 154–160.

DOI: 10.1016/j.dyepig.2014.02.018

Google Scholar

[14] Modzelewska, A., Pettit, C., Achanta, G., Davidson, N. E. Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorganic and Medicinal Chemistry. 14, (2006), 3491–3495.

DOI: 10.1016/j.bmc.2006.01.003

Google Scholar

[15] Zhao, B., Wu, Y., Zhou, Z., Lu, W., Chen, C. Theoretical study on the organic molecular second-order hyperpolarizability. Applied Physics B - Lasers and Optics. 70, (2000), 601–605.

DOI: 10.1007/s003400050868

Google Scholar

[16] Geoghegan, M., Hadziioannou, G. Polymer Electronics, (2013), 1–6.

Google Scholar

[17] Sakthivel, P., Kannan, P. Novel Thermotropic Liquid Crystalline-cum- Photocrosslinkable Polyvanillylidene Alkyl/aryl phosphate Esters.Wiley InterScience.42, (2004), 5215–5226.

DOI: 10.1002/pola.20350

Google Scholar

[18] Kannan, P., Kishore, K. Novel photo-cross-linkable flame retardant polyvanillylidene aryl phosphate esters.Polymers. 38(17), (1997), 4349–4355.

DOI: 10.1016/s0032-3861(96)00907-x

Google Scholar

[19] Vidhya, T., Sidharthan, J. A study on photoactive bischalcone based liquid crystalline polyesters. 2(12), (2017), 200–205.

Google Scholar

[20] Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P.L., Holmes, A.B., Light-emitting diodes based on conjugated polymers. Nature. (1990), 347.

DOI: 10.1038/347539a0

Google Scholar

[21] Lukacs, S. J., Cohen, S. M., Long, F. H. Optical Properties of a Liquid-Crystalline Random Copolyester. Journal of Physical Chemistry B, 103(32), (1999), 6648–6652.

DOI: 10.1021/jp984785v

Google Scholar

[22] Chudger, N.K., Sharma, H., Kansara, S.S., Negai, R., Synthesis of polyester with chalcone linkage as conducting polymer, Macromolecular Reports, (1994), 231-235.

DOI: 10.1080/10601329508019178

Google Scholar

[23] Devia AC, Ferretti FH, Ponce CA, Tomas F. Conformational equilibrium and intramolecular hydrogen bond of 4'X and 4X substituted 2'(OH) chalcones. J Mol Struct Theochem 493: (1999), 187-197.

DOI: 10.1016/s0166-1280(99)00239-0

Google Scholar

[24] Crasta V, Ravindrachary V, Bhajantri RF, Gonsalves R. Growth and characterization of an organic NLO crystal:1-(4-methyl phenyl)-3-(4-methoxyphenyl)-2-propen-1-one. J Cryst Growth 267: (2004), 129-133.

DOI: 10.1016/j.jcrysgro.2004.03.037

Google Scholar

[25] Sarojini BK, Narayana B, Ashalatha BV, Indira J, Lobo KG. Synthesis, crystal growth and studies on non-linear optical property of new chalcones. J Cryst Growth 295: (2006), 54-59.

DOI: 10.1016/j.jcrysgro.2006.07.013

Google Scholar

[26] Evranos B, Ertan R. Spectral Properties of Chalcones II, .(2012), 205–216.

Google Scholar

[27] Tze Pei Phana, Kien Yung Teoa, Zhi-Qiang Liub, Jenn-Kai Tsai c, Meng Guan Taya, Application of unsymmetrical bis-chalcone compounds in dye sensitized solar cell, Chemical Data Collections, 22 (2019), 100259.

DOI: 10.1016/j.cdc.2019.100256

Google Scholar

[28] Prabhash PG, Nair SS. (2016). Synthesis of copper quantum dots by chemical reduction method and tailoring of its band gap., (9).

DOI: 10.1063/1.4948747

Google Scholar

[29] J. Tauc, R. Grigorovici, and A. (1966).Vancu, physica status solidi (b) 15, 627.

DOI: 10.1002/pssb.19660150224

Google Scholar

[30] Smith, D.R.; Morgan, R.L.; Loewenstein, E.V. Comparison of the Radiance of Far-Infrared Sources,. J. Opt. Soc. Am. 58 (3): (1968), 433–434.

DOI: 10.1364/josa.58.000433

Google Scholar

[31] K. R. Harshitha and B. K. Sarojini,Donor-acceptor-donor (DAD) type pipyridinonyl bischalcone derivatives as promising UVA filters,, AIP Conference Proceedings 2244, 040001 (2020)  https://doi.org/10.1063/5.0009078.

DOI: 10.1063/5.0009078

Google Scholar

[32] Kiruba, B., Chidambaravinayagam, S. (2022). Photocrosslinking Property of Certain Synthesized Bis(arylidene)cycloalkanone based Random Copolyesters with Computational Support and their Anticancer Study. Journal of Scientific Research, 14(3), 901–915. https://doi.org/ 10.3329/jsr.v14i3.57161.

DOI: 10.3329/jsr.v14i3.57161

Google Scholar

[33] Hoult, D. I.; Bhakar, B. NMR signal reception: Virtual photons and coherent spontaneous emission,. Concepts in Magnetic Resonance. 9 (5): (1997), 277–297.

DOI: 10.1002/(sici)1099-0534(1997)9:5<277::aid-cmr1>3.0.co;2-w

Google Scholar

[34] Devi DL, Aswini R and Kothai S. Synthesis and Characterisation of chalcone-based copolyesters and their anticancer activity. Int J Pharm Sci Res., 9(4): (2018), 1589-1593.

Google Scholar

[35] L. O. A. Ferreira, A. K. S. M. Valdo, J. A. Nascimento Neto, L. Ribeiro, J. R. D. da Silva, L. H. K. Queiroz Jr, C. N. Perez and F. T. Martins, ss-NMR and single-crystal X-ray diffraction in the elucidation of a new polymorph of bischalcone (1E,4E)-1,5-bis(4-fluorophenyl)penta-1,4dien-3-one, Acta Cryst. (2019). C75, 694-701 https://doi.org/10.1107/S2053229619006156.

DOI: 10.1107/s2053229619006156

Google Scholar

[36] Serdar Burmaoglua, Seyda Ozcanb, Sevgi Balciogluc, Melis Genceld, Samir Abbas Ali Nomac, Sebnem Essizd, Burhan Atesc, Oztekin Algul, Synthesis, biological evaluation and molecular docking studies of bischalcone derivatives as xanthine oxidase inhibitors and anticancer agents, Bioorganic Chemistry, 19, 2019, 103149.

DOI: 10.1016/j.bioorg.2019.103149

Google Scholar

[37] S. Priyarega, A. Muthusamy, K. Kaniappan, S. C. Murugavel Synthesis and characterization of photosensitive polyesters by phase-transfer catalyzed polycondensation, Designed Monomers, and Polymers, 6:2, (2003), 187-196.

DOI: 10.1163/156855503768338241

Google Scholar

[38] Vandersypen, Lieven M. K.; Steffen, Matthias; Breyta, Gregory; Yannoni, Costantino S.; Sherwood, Mark H.; Chuang, Isaac L. Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance,. Nature. 414 (6866): (2001), 883–887.

DOI: 10.1038/414883a

Google Scholar

[39] Barsukov, E., and Macdonald, J. R. Impedance Spectroscopy, 2nd ed. Wiley-Interscience, New York. (2005), 2.

Google Scholar

[40] Conway, B. E. Electrochemical Supercapacitors, Kluwer Academic/Plenum, New York, (1999).

Google Scholar

[41] Orazem, M., and Tribollet, B. Electrochemical Impedance Spectroscopy (The ECS Series of Texts and Monographs) Wiley-Interscience, New York, (2008).

Google Scholar