[1]
International Coffee Organization, Coffee Market Report - December 2021, www.ico.org/documents/cy2021-22/cmr-1221-e.pdf.
Google Scholar
[2]
A.S. Franca, L.S. Oliveira. Coffee processing solid wastes: Current uses and future perspectives, in: G.S. Ashworth, P. Azevedo (Eds.), Agricultural Wastes, ISBN 156978-1-60741-305-9, Nova Science Publishers Inc., New York, 2009, pp.155-90.
Google Scholar
[3]
C.A.A. Durán, A. Tsukui, F.K.F. Santos, et al. Café: Aspectos gerais e seu aproveitamento para além da bebida, Rev. Virtual Quím. 9 (2017) 107-134.
Google Scholar
[4]
A. Kovalcik, S. Obruca, I. Marova, Valorization of spent coffee grounds: A review, Food and Bioproducts Processing 110 (2018) 104-119.
DOI: 10.1016/j.fbp.2018.05.002
Google Scholar
[5]
A. Cervera-Mata, G. Delgado, A. Fernández-Arteaga, et al. Spent coffee grounds by products and their influence on soil C-N dynamics, J. Environ. Manage. 302-Part B (2022) 114075.
DOI: 10.1016/j.jenvman.2021.114075
Google Scholar
[6]
F.J. Cerino-Córdova, N.E. Dávila-Guzmán, A.M. García León, et al., Revalorization of coffee waste, in: D. Toledo Castanheira (Ed.), Coffee - Production and Research, IntechOpenLimited, London, 2020.
DOI: 10.5772/intechopen.92303
Google Scholar
[7]
Bio-Bean (homepage), The significant value of spent coffee grounds, www.bio-bean.com/news-post/the-significant-value-of-spent-coffee-grounds/ (2021, accessed 10 January 2022).
Google Scholar
[8]
Coffee Based (homepage), www.coffeebased.nl/en/products/ (2021, accessed 10 January 2022).
Google Scholar
[9]
Kaffeeform GmbH (homepage), www.kaffeeform.com/en/ (2022, accessed 10 January 2022).
Google Scholar
[10]
R.J. Torres-Cabán, Adsorption of polluants by spent-coffee-grounds composite beads. PhD Thesis, University of Puerto Rico, Mayaguez Campus, PR, (2020).
Google Scholar
[11]
L. Liu, L. Yu, W. Zhang, et al. Adsorption performance of Pb(II) ions from aqueous solution onto a novel complex of coffee grounds and attapulgite clay, Desalin. Water Treat. 153 (2019) 208-15.
DOI: 10.5004/dwt.2019.24080
Google Scholar
[12]
R.F. Lessa, M.L. Nunes, A. Fajardo, Chitosan/waste coffee-grounds composite: An efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water, Carbohydr. Polym. 189 (2018) 257-266.
DOI: 10.1016/j.carbpol.2018.02.018
Google Scholar
[13]
I. Yang, G.S. Han, S.W. Oh, Larch pellets fabricated with coffee waste and the commercializing potential of the pellets, J. Korean Wood Sci. Technol. 46: 1 (2018) 48-59,.
DOI: 10.5658/wood.2018.46.1.48
Google Scholar
[14]
G. Semaan, S. Shobana, S. Arvindnarayan, et al., Food waste biorefinery: A case study for spent coffee grounds (SCGs) into bioactive compounds across the European Union, in: T. Bhaskar, S. Varjani, A. Pandey, E.R. Rene (Eds), Waste Biorefinery, Elsevier. 2021, pp.459-73.
DOI: 10.1016/b978-0-12-821879-2.00017-x
Google Scholar
[15]
Kaffe Bueno ApS (homepage), www.kaffebueno.com (2019, accessed in: 28 Jun 2021).
Google Scholar
[16]
S.-T. Hung, Y.-Y. Yeh, C.-K. Yen, et al., Process of making yarns with coffee residue. U.S. Patent 8834753 B2 (2014).
Google Scholar
[17]
Singtex Industrial Co., Ltd (homepage). Fabric, www.singtex.com/fabric/ (2021, accessed in 28 June 2021).
Google Scholar
[18]
Markets and Markets, Biodegradable plastic market - Report CH2736. 09/2021, www.marketsandmarkets.com/Market-Reports/biodegradable-plastics-93.html.
Google Scholar
[19]
R. Shah, R. Chen, H. Wong, Present and future trends in biodegradable polymers, Plastics Today, www.plasticstoday.com (10/20/2020, accessed 28 June 2021).
Google Scholar
[20]
A. J. de Santos, L.V.O.D. Valentina, A.A.H. Schulz, et al., From obtaining to degradation of PHB: Material properties. Part I. Ing Cienc. 13: 26 (2017) 269-98.
DOI: 10.17230/ingciencia.13.26.10
Google Scholar
[21]
B. McAdam, M. B. Fournet, P. McDonald. Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics, Polymers 12: 12 (2020) 2908.
DOI: 10.3390/polym12122908
Google Scholar
[22]
E.A. Soares, Poli(hidroxobutirato) (PHB) – Ficha técnica com as principais características, aplicações e propriedades do poli(hidroxibutirato) (PHB), Plástico Industrial, www.arandanet.com.br/revista/pi/noticia/3146-Poli(hidroxibutirato)-(PHB) (26/11/2021, accessed 10 January 2022).
DOI: 10.11606/t.87.2008.tde-21012009-115422
Google Scholar
[23]
P.C. Peçanha, Avaliação das propriedades térmicas, mecânicas e morfológicas de compósitos de poli(3-hidroxibutirato)(PHB) e borra de café (COFD), Undergraduate Thesis, Universidade do Estado do Rio de Janeiro, Instituto Politécnico. Nova Friburgo, RJ, BR, (2017).
DOI: 10.11606/t.87.2008.tde-21012009-115422
Google Scholar
[24]
Chang Y-Ch, Chen Y, Nig J, et al., No such thing as trash: A 3D-printable polymer composite composed of oil-extracted spent coffee grounds and polylactic acid with enhanced impact toughness, ACS Sustainable Chem. Eng. 7: 18 (2019) 15304-310.
DOI: 10.1021/acssuschemeng.9b02527
Google Scholar
[25]
J. Tellers, P. Willems, B. Tjeerdsma, et al., Spent coffee grounds as propertly enhancing filler in a wholly bio-based epoxi resin, Macromol. Mater. Eng. 306: 11 (2021) 2100323,.
DOI: 10.1002/mame.202100323
Google Scholar
[26]
Y. Leow, P.Y.M. Yew, P.L. Chee, et al., Recicling of spent coffee ground for useful extracts and green composites, RSC Advs, 11 (2020) 2682.
DOI: 10.1039/d0ra09379c
Google Scholar
[27]
L.F. Xavier, T.S. Lisboa, I. Lula, Reaproveitamento da borra de café na obtenção de biodiesel e de carvão ativado para tratamento de rejeitos industriais têxteis, Sci. Amazon 6: 2 (2017) 91-108.
Google Scholar
[28]
Z. Al-Hamamre, S. Foerster, F. Hartmann, et al., Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing, Fuel 96 (2012) 70-76,.
DOI: 10.1016/j.fuel.2012.01.023
Google Scholar
[29]
Blinová L, Bartošová A, Sirotiak M. Biodiesel Production from spent coffee grounds, Research Papers Faculty of Materials Science and Technology Slovak University of Technology – FMST/SUT 25:40 (2017) 113-121.
DOI: 10.1515/rput-2017-0013
Google Scholar
[30]
G. Sousa, L. Leal, New oils for cosmetic O/W emulsions: In vitro/in vivo evaluation, Cosmetics 5:1 (2018) 6.
Google Scholar
[31]
A.S.C. Bonfim, D.M. Oliveira, H.J.C. Voorwald, et al., Valorization of spent coffee grounds as precursors for biopolymers and composite production, Polymers 14: 3 (2022) 437.
DOI: 10.3390/polym14030437
Google Scholar
[32]
S. Obruca, S. Petrik, P. Benesova, et al. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates, Appl. Microbiol. Biotechno. 98: 13 (2014):5883-90.
DOI: 10.1007/s00253-014-5653-3
Google Scholar
[33]
D. Brom, This start-up is making a palm oil alternative from used coffee grounds. World Economic Forum, (02/05/2019, accessed 15 January 2020). www.weforum.org/agenda/2019/05/this-start-up-is-making-a-palm-oil-alternative-from-used-coffee-grounds/.
Google Scholar
[34]
N. Kondamudi, S.K. Mohapatra and M. Misra, Spent coffee grounds as a versatile source of green energy, J. Agric. Food Chem. 56: 24 (2008) 11757–60.
DOI: 10.1021/jf802487s
Google Scholar
[35]
A.E. Atabani, S.M. Mercimek, S. Arvindnarayan, et al., Valorization of spent coffee grounds recycling as a potential alternative fuel resource in Turkey: An experimental study, J. Air Waste Manag. Assoc. 68: 3 (2018) 196-214,.
DOI: 10.1080/10962247.2017.1367738
Google Scholar
[36]
ASTM D638 - 14. Standard test method for tensile properties of plastics.
Google Scholar
[37]
ASTM D790 - 17. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials.
DOI: 10.1520/d0790-07
Google Scholar
[38]
A.K.A. Ghazvini, G. Ormondroyd, S. Curling, et al., An investigation on the possible use of coffee silverskin in PLA/PBS composites, J. Appl. Polym. Sci. 139: 2 (2022) e52264.
DOI: 10.1002/app.52264
Google Scholar
[39]
S.T. Georgopoulos, P.A. Tarantili, E. Avgerinos, et al., Thermoplastic polymers reinforced with fibrous agricultural residues, Polym Degrad. Stab. 90: 2 (2005) 303-12.
DOI: 10.1016/j.polymdegradstab.2005.02.020
Google Scholar
[40]
H. Wu, W. Hu, Y. Zhang, et al. Effect of oil extraction on properties of spent coffee ground–plastic composites, J. Mater. Sci. 51: 22 (2016) 10205-214.
DOI: 10.1007/s10853-016-0248-2
Google Scholar
[41]
S. Angelini, P. Cerruti P, B. Immizi, et al., Effect of a lignocellulosic filler on the properties of poly (3-hydroxybutyrate), Int. J. Bio Macromol. 71 (2014) 163-76.
Google Scholar
[42]
A.S.C. Bomfim, H.J.C. Voorwald, K.C.C.C. Benini, et al., Sustainable application of recycled espresso coffee capsules: Natural composite development for a home composter product. J Clean Prod 2021; 297:126647.
DOI: 10.1016/j.jclepro.2021.126647
Google Scholar
[43]
K.C. Reis, L. Pereira, I.C.N. Melo, et al. Particles of coffee wastes as reinforcement in Polyhydroxybutyrate (PHB) based composites, Mater. Res. 18: 3 (2015) :546-552.
DOI: 10.1590/1516-1439.318114
Google Scholar
[44]
T.B.R. Nery, Z.I.G. Santos, N.M. José, Desenvolvimento e caracterização de biocompósitos de polihidroxibutirato e fibra de bananeira, Matéria (Rio J.) 23: 4 (2018) e-12257.
DOI: 10.1590/s1517-707620180004.0591
Google Scholar
[45]
H. Moustafa, C. Guizani and A. Dufresne. Sustainable biodegradable coffee grounds filler and its effect on the hydrophobicity, mechanical and t\Aaa\\\\hermal properties of biodegradable PBAT composites, J. Appl. Polym. Sci. 134 (2016) 44498.
DOI: 10.1002/app.44498
Google Scholar