Strategies Regarding High-Temperature Strength and Toughness Applications for SUS304 Alloy

Article Preview

Abstract:

Steel alloys with high Mn and low C, low Cr wt.%, were designed based on the composition system for traditional high toughness, creep resistance, and longevity for high-temperature applications. In terms of energy resource utilization during production and refining, CALPHAD strategical optimization is preferable for all steel alloys. Thermo-Calc software calculates the phase diagrams α-BCC (Ferrite), and M23C6 (carbide) phases. The vital temperatures which are highlighted in this work are Ac3 (threshold temperature at which ferrite is fully transformed into austenite (α→γ)), and A4 (the threshold temperature at which austenite is fully transformed into Delta ferrite (γ→δ)) are essential for phase transformations. JMatPro software is used to predict the mechanical properties of steel alloys. The interfacial energies with regards to alloying elements for M23C6 are calculated to be between ~0.272 J/m-2 to ~0.328 J/m-2 for α-BCC) matrix, while γ-FCC has interfacial energy ranges to be between ~0.132 J/m-2 to ~0.168 J/m-2. This paper focuses on investigating the effect of alloying elements on phase transformations, interfacial energy, coarsening rate of carbides, and many other mechanical properties such as toughness at high-temperature applications using CALPHAD strategies.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1079)

Pages:

67-84

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. He, D. Jiang, Effect of the degree of rolling reduction on the stress corrosion cracking behavior of SUS 304 stainless steel, Int. J. Electrochem. Sci. 13 (2018) 1614–1628.

DOI: 10.20964/2018.02.56

Google Scholar

[2] M. Mehrzad, A. Sadeghi, M. Farahani, Microstructure and properties of transient liquid phase bonding of AM60 Mg alloy to 304 stainless steel with Zn interlayer, J. Mater. Process. Technol. 266 (2019) 558–568.

DOI: 10.1016/j.jmatprotec.2018.11.031

Google Scholar

[3] W.J. Mills, Fracture toughness of type 304 and 316 stainless steels and their welds, Int. Mater. Rev. 42 (1997) 45–82.

DOI: 10.1179/imr.1997.42.2.45

Google Scholar

[4] A. Kundu, D.P. Field, P. Chandra Chakraborti, Influence of strain amplitude on the development of dislocation structure during cyclic plastic deformation of 304 LN austenitic stainless steel, Mater. Sci. Eng. A. 762 (2019) 138090.

DOI: 10.1016/j.msea.2019.138090

Google Scholar

[5] M. Yasuoka, P. Wang, K. Zhang, Z. Qiu, K. Kusaka, Y.S. Pyoun, R. ichi Murakami, Improvement of the fatigue strength of SUS304 austenite stainless steel using ultrasonic nanocrystal surface modification, Surf. Coatings Technol. 218 (2013) 93–98.

DOI: 10.1016/j.surfcoat.2012.12.033

Google Scholar

[6] M. Godec, D.A.S. Balantič, Coarsening behaviour of M23C6 carbides in creep-resistant steel exposed to high temperatures, Sci. Rep. 6 (2016) 1–7.

DOI: 10.1038/srep29734

Google Scholar

[7] H.K.D.H. Bhadeshia, Mathematical models in materials science, Mater. Sci. Technol. 24 (2008) 128–136.

Google Scholar

[8] G.M.A.M. El-Fallah, S.W. Ooi, H.K.D.H. Bhadeshia, Effect of nickel aluminide on the bainite transformation in a Fe-0.45C–13Ni–3Al–4Co steel, and associated properties, Mater. Sci. Eng. A. 767 (2019) 138362.

DOI: 10.1016/j.msea.2019.138362

Google Scholar

[9] K.H. Lo, C.H. Shek, J.K.L. Lai, Recent developments in stainless steels, Mater. Sci. Eng. R Reports. 65 (2009) 39–104.

Google Scholar

[10] K. Guan, X. Xu, H. Xu, Z. Wang, Effect of aging at 700 °c on precipitation and toughness of AISI 321 and AISI 347 austenitic stainless steel welds, Nucl. Eng. Des. 235 (2005) 2485–2494.

DOI: 10.1016/j.nucengdes.2005.06.006

Google Scholar

[11] J. Li, C. Zhang, B. Jiang, L. Zhou, Y. Liu, Effect of large-size M23C6-type carbides on the low-temperature toughness of martensitic heat-resistant steels, J. Alloys Compd. 685 (2016) 248–257.

DOI: 10.1016/j.jallcom.2016.05.294

Google Scholar

[12] W. Wang, R. Wang, A. Dong, G. Zhu, D. Wang, W. Zhou, W. Pan, D. Shu, B. Sun, Creep behaviors of MC carbide reinforced nickel based composite, Mater. Sci. Eng. A. 756 (2019) 11–17.

DOI: 10.1016/j.msea.2019.04.010

Google Scholar

[13] S. Ghosh, V. Kain, A. Ray, H. Roy, S. Sivaprasad, S. Tarafder, K.K. Ray, Deterioration in fracture toughness of 304LN austenitic stainless steel due to sensitization, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 40 (2009) 2938–2949.

DOI: 10.1007/s11661-009-0023-y

Google Scholar

[14] J.H. Baek, C.M. Kim, W.S. Kim, Y.T. Kho, Fatigue crack growth and fracture toughness properties of 304 stainless steel pipe for LNG transmission, Met. Mater. Int. 7 (2001) 579–585.

DOI: 10.1007/bf03179257

Google Scholar

[15] M. Calcagnotto, D. Ponge, D. Raabe, Effect of grain refinement to 1μm on strength and toughness of dual-phase steels, Mater. Sci. Eng. A. 527 (2010) 7832–7840.

DOI: 10.1016/j.msea.2010.08.062

Google Scholar

[16] K.H. Lo, C.H. Shek, J.K.L. Lai, Recent developments in stainless steels, Mater. Sci. Eng. R Reports. 65 (2009) 39–104.

Google Scholar

[17] V.K. Euser, D.L. Williamson, K.D. Clarke, K.O. Findley, J.G. Speer, A.J. Clarke, Effects of Short-Time Tempering on Impact Toughness, Strength, and Phase Evolution of 4340 Steel Within the Tempered Martensite Embrittlement Regime, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 50 (2019) 3654–3662.

DOI: 10.1007/s11661-019-05271-4

Google Scholar

[18] W. Xiong, CALPHAD-Based Integrated Computational Materials Engineering Research for Materials Genomic Design, Jom. 67 (2015) 1864–1865.

DOI: 10.1007/s11837-015-1514-5

Google Scholar

[19] S.L. Shang, H. Zhang, S. Ganeshan, Z.K. Liu, The development and application of a thermodynamic database for magnesium alloys, Jom. 60 (2008) 45–47.

DOI: 10.1007/s11837-008-0165-1

Google Scholar

[20] B. Hu, X. Tu, H. Luo, X. Mao, Effect of warm rolling process on microstructures and tensile properties of 10 Mn steel, J. Mater. Sci. Technol. 47 (2020) 131–141.

DOI: 10.1016/j.jmst.2019.12.026

Google Scholar

[21] A. Phillion, H.S. Zurob, C.R. Hutchinson, H. Guo, D. V. Malakhov, J. Nakano, G.R. Purdy, Studies of the influence of alloying elements on the growth of ferrite from austenite under decarburization conditions: Fe-C-Ni alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 35 A (2004) 1237–1242.

DOI: 10.1007/s11661-004-0297-z

Google Scholar

[22] S. Lin, CALPHAD-assisted morphology control of manganese sulfide inclusions in free-cutting steels, (2016) 94.

Google Scholar

[23] Z. Dudás, Comparison of measured phase volumes with calculated ones created by TTT-CCT diagram transformation, Mater. Sci. Forum. 537–538 (2007) 497–504.

DOI: 10.4028/www.scientific.net/msf.537-538.497

Google Scholar

[24] M. Sarizam, Y. Komizo, Effects of holding temperature on bainite transformation in Cr-Mo steel, J. Mech. Eng. Sci. 7 (2014) 1103–1114.

DOI: 10.15282/jmes.7.2014.9.0107

Google Scholar

[25] T. Falkenreck, A. Kromm, T. Böllinghaus, Investigation of physically simulated weld HAZ and CCT diagram of HSLA armour steel, Weld. World. 62 (2018) 47–54.

DOI: 10.1007/s40194-017-0511-4

Google Scholar

[26] J.P. Schillé, Z. Guo, N. Saunders, A.P. Miodownik, Modeling phase transformations and material properties critical to processing simulation of steels, Mater. Manuf. Process. 26 (2011) 137–143.

DOI: 10.1080/10426910903153059

Google Scholar

[27] H.L. Chen, H. Mao, Q. Chen, Database development and Calphad calculations for high entropy alloys: Challenges, strategies, and tips, Mater. Chem. Phys. 210 (2018) 279–290.

DOI: 10.1016/j.matchemphys.2017.07.082

Google Scholar

[28] Y.X. Wu, W.W. Sun, X. Gao, M.J. Styles, A. Arlazarov, C.R. Hutchinson, The effect of alloying elements on cementite coarsening during martensite tempering, Acta Mater. (2020).

DOI: 10.1016/j.actamat.2019.11.040

Google Scholar

[29] W. Stichel, Handbook of comparitative world steel standards; USA-United Kingdom-Germany-France-Russia-Japan-Canada-Australia-International. Hrsg.: Albert & Melilli, 552 Seiten. ASTM Data Series DS 67, American Society for Testing and Materials, PA, USA 1996, £ 195.00, (1997).

DOI: 10.1002/maco.19970480611

Google Scholar

[30] D.D.S. Silva, J.M.B. Sobrinho, C.R. Souto, R.M. Gomes, Application of electromechanical impedance technique in the monitoring of sigma phase embrittlement in duplex stainless steel, Mater. Sci. Eng. A. 788 (2020).

DOI: 10.1016/j.msea.2020.139457

Google Scholar

[31] T. Sourmail, Precipitation in creep resistant austenitic stainless steels, Mater. Sci. Technol. 17 (2001) 1–14.

DOI: 10.1179/026708301101508972

Google Scholar

[32] Y.Q. Wang, J. Han, H.C. Wu, B. Yang, X.T. Wang, Effect of sigma phase precipitation on the mechanical and wear properties of Z3CN20.09M cast duplex stainless steel, Nucl. Eng. Des. 259 (2013) 1–7.

DOI: 10.1016/j.nucengdes.2013.02.037

Google Scholar

[33] B. Lv, F.C. Zhang, M. Li, R.J. Hou, L.H. Qian, T.S. Wang, Effects of phosphorus and sulfur on the thermoplasticity of high manganese austenitic steel, Mater. Sci. Eng. A. 527 (2010) 5648–5653.

DOI: 10.1016/j.msea.2010.05.023

Google Scholar

[34] I. Shuro, H.H. Kuo, T. Sasaki, K. Hono, Y. Todaka, M. Umemoto, G-phase precipitation in austenitic stainless steel deformed by high pressure torsion, Mater. Sci. Eng. A. 552 (2012) 194–198.

DOI: 10.1016/j.msea.2012.05.030

Google Scholar

[35] H. Kotan, Thermal stability, phase transformation and hardness of mechanically alloyed nanocrystalline Fe-18Cr-8Ni stainless steel with Zr and Y2O3 additions, J. Alloys Compd. 749 (2018) 948–954.

DOI: 10.1016/j.jallcom.2018.03.324

Google Scholar

[36] U.E. Klotz, C. Solenthaler, P.J. Uggowitzer, Martensitic-austenitic 9-12% Cr steels-Alloy design, microstructural stability and mechanical properties, Mater. Sci. Eng. A. 476 (2008) 186–194.

DOI: 10.1016/j.msea.2007.04.093

Google Scholar

[37] K.H. Lee, J.Y. Suh, J.Y. Huh, D.B. Park, S.M. Hong, J.H. Shim, W.S. Jung, Effect of Nb and Cu on the high temperature creep properties of a high Mn-N austenitic stainless steel, Mater. Charact. 83 (2013) 49–57.

DOI: 10.1016/j.matchar.2013.05.015

Google Scholar

[38] L. Schäfer, Influence of delta ferrite and dendritic carbides on the impact and tensile properties of a martensitic chromium steel, J. Nucl. Mater. 258–263 (1998) 1336–1339.

DOI: 10.1016/s0022-3115(98)00200-1

Google Scholar

[39] F. Niessen, Austenite reversion in low-carbon martensitic stainless steels–a CALPHAD-assisted review, Mater. Sci. Technol. (United Kingdom). 34 (2018) 1401–1414.

DOI: 10.1080/02670836.2018.1449179

Google Scholar

[40] Å. Gustafson, J. Ågren, Possible effect of Co on coarsening of M23C6 carbide and Orowan stress in a 9% Cr steel, ISIJ Int. 41 (2001) 356–360.

DOI: 10.2355/isijinternational.41.356

Google Scholar

[41] W.J. Nam, H.C. Choi, Effects of silicon, nickel, and vanadium on impact toughness in spring steels, Mater. Sci. Technol. 13 (1997) 568–574.

DOI: 10.1179/mst.1997.13.7.568

Google Scholar

[42] Q.Y. Chen, J. Chen, J.K. Ren, Z.H. Wang, Z.Y. Liu, Effect of Si content on microstructure and cryogenic toughness of heat affected zone of low nickel steel, Mater. Sci. Eng. A. 771 (2020) 138621.

DOI: 10.1016/j.msea.2019.138621

Google Scholar

[43] D.W. Suh, N.J. Kim, Low-density steels, Scr. Mater. 68 (2013) 337–338.

Google Scholar

[44] J. Xue, G. Tao, C. Tang, N. Xu, F. Li, C. Yin, Effect of siliconizing with molten salt on the wear resistance and corrosion resistance of AISI 302 stainless steel, Surf. Coatings Technol. 382 (2020) 125217.

DOI: 10.1016/j.surfcoat.2019.125217

Google Scholar

[45] I. Shuro, H.H. Kuo, T. Sasaki, K. Hono, Y. Todaka, M. Umemoto, G-phase precipitation in austenitic stainless steel deformed by high pressure torsion, Mater. Sci. Eng. A. 552 (2012) 194–198.

DOI: 10.1016/j.msea.2012.05.030

Google Scholar

[46] Y. Mandiang, G. Cizeron, Precipitation of M3P phosphide in titanium modified type 316 stainless steel, Mater. Sci. Technol. 12 (1996) 771–775.

DOI: 10.1179/026708396790122323

Google Scholar

[47] J.E. Morral, G.R. Purdy, Particle coarsening in binary and multicomponent alloys, Scr. Metall. Mater. 30 (1994) 905–908.

DOI: 10.1016/0956-716x(94)90413-8

Google Scholar

[48] J.O. Andersson, J. Ågren, Models for numerical treatment of multicomponent diffusion in simple phases, J. Appl. Phys. 72 (1992) 1350–1355.

DOI: 10.1063/1.351745

Google Scholar

[49] V.R. Becker, The nucleation during precipitation in metallic mixed crystals, Ann. Phys. 421 (1938) 128–140.

Google Scholar

[50] C.E. Slone, E.P. George, M.J. Mills, Elevated temperature microstructure evolution of a medium-entropy CrCoNi superalloy containing Al,Ti, J. Alloys Compd. 817 (2020) 152777.

DOI: 10.1016/j.jallcom.2019.152777

Google Scholar

[51] S.C. Cha, S.H. Hong, I. Kim, M.Y. Kim, J. Park, J.Y. Suh, J.H. Shim, W.S. Jung, CALPHAD-based alloy design for advanced automotive steels - Part I: Development of bearing steels with enhanced strength and optimized microstructure, Calphad Comput. Coupling Phase Diagrams Thermochem. 54 (2016) 165–171.

DOI: 10.1016/j.calphad.2016.04.007

Google Scholar