Effect of Co on Microstructure and Properties of Al-30%Si Alloys

Article Preview

Abstract:

In this paper, the effects of different Co contents on the microstructure and properties of Al-30% Si alloy were studied by means of metallographic microscope, microhardness tester, XRD, conductivity tester and DSC thermal analyzer. The results show that cobalt can effectively improve the microstructure of the alloy, the long needle eutectic silicon becomes short rod, and the coarse irregular block primary silicon particles become smaller. When 0.3% cobalt is added into the alloy, the refining effect of eutectic silicon is the most obvious. When the amount of Co is 0.6%, the refinement effect of primary silicon is the best. The addition of Co can improve the hardness of the alloy. When 0.6 ~ 0.9% cobalt is added, the hardness is the highest. With the increase of Co content, the conductivity and transformation latent heat of the alloy show the same change law. When 0.6% cobalt is added, its value is the maximum. It can be seen that when the Co content is 0.6%, the microstructure and comprehensive properties of the alloy are the best.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1079)

Pages:

15-20

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kobayashi K, Shingu P H, Ozaki R: Journal of Materials Science Vol. 10(1975), pp.290-299.

Google Scholar

[2] Min Z, Zhao D, Teng X, et al.: Materials & Design Vol. 47(2013), pp.857-864.

Google Scholar

[3] Xu C L, Jiang Q C, Yang Y F, et al.: Journal of Alloys and Compounds Vol. 422(2006), p. L1-L4.

Google Scholar

[4] Li, J. H., et al.: Acta Materialia Vol. 84(2015), pp.153-163.

Google Scholar

[5] Li C, Pan Y, Lu T, et al.: Metals and Materials International, Vol. 2018, 24(5).

Google Scholar

[6] Nogita K, Yasuda H, Yoshiya M, et al.: Journal of Alloys & Compounds Vol. 489(2010), pp.415-420.

Google Scholar

[7] Jun Shan, Zhuang De Xie, Yu Lai Gao: J Mater Sci Lett Vol. 20(2001), p.1513.

Google Scholar

[8] Li Yuanyuan, Zhang Daton g, Zhang Weiwen: Trans Nonferrous Met Soc China Vol. 12(2002), p.878.

Google Scholar

[9] Zoua Q, Ning H, Shenb Z, et al.: Separation and Purification Technology Vol. 207(2018).

Google Scholar

[10] Jung J G, Ahn T Y, Cho Y H, et al.: Acta Materialia Vol. 2017, p. S1359645417308972.

Google Scholar

[11] Mirzadeh H, Niroumand B: Journal of Materials Processing Technology Vol. 209(2009), pp.4977-4982.

Google Scholar

[12] Srivastava V C, Mandal R K, Ojha S N: Materials Science & Engineering A Vol.383(2004), pp.14-20.

Google Scholar

[13] Srivastava V C, Mandal P K, Ojha S N: Mater Sci Eng A Vol. 304-306(2001), p.555.

Google Scholar

[14] Kim W J, Yeon J H, Lee J E: J Alloys Comp. Vol. 308(2000), p.237.

Google Scholar

[15] Zhao L Z, Zhao M J, Song L J, et al.: Materials & Design (1980-2015) Vol. 56(2014), pp.542-548.

Google Scholar

[16] Huang Huiyi, Liu Yiyuan, Tang Peng, et al.: Materials Reports Vol. 34(2020), pp.16087-16093.

Google Scholar

[17] Marcella G. C. Xavier, Thaisa M. G. Souza, Noé Cheung, et al.: Int. J. Adv. Manuf. Technol. Vol. 107 (2020), p.717–730.

Google Scholar

[18] Mulazimoglu M H, Drew R A L, Gruzleski J E.: Metallurgical Transactions A Vol., 20(1989), pp.383-389.

Google Scholar