[1]
D. Kleiven and J. Akola, Precipitate formation in aluminium alloys: Multi-scale modelling approach,, Acta Mater., vol. 195, p.123–131, 2020, doi: https://doi.org/10.1016/j.actamat.2020.05.050.
DOI: 10.1016/j.actamat.2020.05.050
Google Scholar
[2]
B. F. Jogi, P. K. Brahmankar, V. S. Nanda, and R. C. Prasad, Some studies on fatigue crack growth rate of aluminum alloy 6061,, J. Mater. Process. Technol., vol. 201, no. 1, p.380–384, 2008, doi: https://doi.org/10.1016/j.jmatprotec.2007.11.302.
DOI: 10.1016/j.jmatprotec.2007.11.302
Google Scholar
[3]
O. Bataineh, Effect of roller burnishing on the surface roughness and hardness of 6061-T6 aluminum alloy using ANOVA,, Int. J. Mech. Eng. Robot. Res., vol. 8, no. 4, p.565–569, 2019,.
DOI: 10.18178/ijmerr.8.4.565-569
Google Scholar
[4]
A. M. Hassan, O. M. Bataineh, and K. M. Abed, The effect of time and temperature on the precipitation behavior and hardness of Al-4 wt%Cu alloy using design of experiments,, J. Mater. Process. Technol., vol. 204, no. 1–3, p.343–349, 2008,.
DOI: 10.1016/j.jmatprotec.2007.11.047
Google Scholar
[5]
S. J. Andersen, C. D. Marioara, J. Friis, S. Wenner, and R. Holmestad, Precipitates in aluminium alloys,, Adv. Phys. X, vol. 3, no. 1, p.1479984, Jan. 2018,.
DOI: 10.1080/23746149.2018.1479984
Google Scholar
[6]
G. Mrówka-Nowotnik, Influence of chemical composition variation and heat treatment on microstructure and mechanical properties of 6xxx alloys,, Arch. Mater. Sci. Eng., vol. 46, no. 2, p.98–107, (2010).
DOI: 10.1201/9781351045636-140000212
Google Scholar
[7]
M. MANSOURINEJAD and B. MIRZAKHANI, Influence of sequence of cold working and aging treatment on mechanical behaviour of 6061 aluminum alloy,, Trans. Nonferrous Met. Soc. China, vol. 22, no. 9, p.2072–2079, 2012, doi: https://doi.org/10.1016/S1003-6326(11)61430-1.
DOI: 10.1016/s1003-6326(11)61430-1
Google Scholar
[8]
M. E. Kassner, P. Geantil, and X. Li, A Study of the Quench Sensitivity of 6061-T6 and 6069-T6 Aluminum Alloys,, J. Metall., vol. 2011, p.747198, 2011,.
DOI: 10.1155/2011/747198
Google Scholar
[9]
S. Rajakumar, C. Muralidharan, and V. Balasubramanian, Predicting tensile strength, hardness and corrosion rate of friction stir welded AA6061-T6 aluminium alloy joints,, Mater. Des., vol. 32, no. 5, p.2878–2890, 2011,.
DOI: 10.1016/j.matdes.2010.12.025
Google Scholar
[10]
C. F. Tan and M. R. Said, Effect of hardness test on precipitation hardening aluminium alloy 6061-t6,, Chiang Mai J. Sci., vol. 36, no. 3, p.276–286, (2009).
Google Scholar
[11]
D. Merayo, A. Rodríguez-Prieto, and A. M. Camacho, Prediction of mechanical properties by artificial neural networks to characterize the plastic behavior of aluminum alloys,, Materials (Basel)., vol. 13, no. 22, p.1–22, 2020,.
DOI: 10.3390/ma13225227
Google Scholar
[12]
O. Bataineh and D. Dalalah, Strategy for optimising cutting parameters in the dry turning of 6061-T6 aluminium alloy based on design of experiments and the generalised pattern search algorithm,, Int. J. Mach. Mach. Mater., vol. 7, no. 1–2, p.39–57, (2010).
DOI: 10.1504/ijmmm.2010.029845
Google Scholar
[13]
G. B. Veeresh Kumar, R. Pramod, C. S. P. Rao, and P. S. S. Gouda, Artificial Neural Network Prediction On Wear Of Al6061 Alloy Metal Matrix Composites Reinforced With -Al2o3,, Mater. Today Proc., vol. 5, no. 5, Part 2, p.11268–11276, 2018, doi: https://doi.org/10.1016/ j.matpr.2018.02.093.
DOI: 10.1016/j.matpr.2018.02.093
Google Scholar
[14]
J. Zhang, P. Gao, and F. Fang, An ATPSO-BP neural network modeling and its application in mechanical property prediction,, Comput. Mater. Sci., vol. 163, p.262–266, 2019, doi: https://doi.org/10.1016/j.commatsci.2019.03.037.
DOI: 10.1016/j.commatsci.2019.03.037
Google Scholar
[15]
A. M. Hassan, A. Alrashdan, M. T. Hayajneh, and A. T. Mayyas, Prediction of density, porosity and hardness in aluminum–copper-based composite materials using artificial neural network,, J. Mater. Process. Tech., vol. 209, no. 2, p.894–899, 2009,.
DOI: 10.1016/j.jmatprotec.2008.02.066
Google Scholar
[16]
P. J. Bagga, M. A. Makhesana, H. D. Patel, and K. M. Patel, Indirect method of tool wear measurement and prediction using ANN network in machining process,, Mater. Today Proc., vol. 44, p.1549–1554, 2021,.
DOI: 10.1016/j.matpr.2020.11.770
Google Scholar
[17]
O. M. Bataineh, M. A. Al-Shraideh, and A. T. Latifeh, A quadratic regression model with interaction to optimize the turning conditions of Mild Carbon Steel,, Int. J. Mech. Eng. Robot. Res., vol. 7, no. 1, 2018,.
DOI: 10.18178/ijmerr.7.1.78-82
Google Scholar
[18]
O. Bataineh and M. Almomani, Applying ANOVA and DOE to study the effect of manganese on the hardness and wear rate of artificially aged Al-4.5wt%Cu alloys,, Int. J. Cast Met. Res., vol. 31, no. 1, 2018,.
DOI: 10.1080/13640461.2017.1366128
Google Scholar
[19]
O. Bataineh, A. Al-shoubaki, and O. Barqawi, Optimising process conditions in MIG welding of aluminum alloys through factorial design experiments,, in Latest Trends in Environmental and Manufacturing Engineering Optimising, 2012, p.21–26.
Google Scholar