Photocatalytic Activity of CoO/ZnO Nanocrystalline for Dye Wastewater Treatment under UV Light

Article Preview

Abstract:

CoO nanocrystal is well-known photocatalyst for overall water splitting. However it suffers from a very short lifetime of only 1 h. The poor stability is derived from carrier recombination-induced thermal oxidation. This research will provide information about synthesis of CoO/ZnO nanocrystalline that can potentially enhance photocatalysts. CoO has been synthesized first under hydrothermal method, followed by calcination process. Thereafter, CoO has been used to produce CoO/ZnO under precipitation method. The samples were characterized using XRD (X-Ray Diffraction), FTIR (Fourier Transform Infrared Spectroscopy), and UV-VIS (UV–Visible Spectroscopy) to analyze their composition, chemical functional group, optical absorption, and band gap. The XRD spectrum showed that CoO/ZnO had cubic spinel and hexagonal phase structure with crystallite size of 69.0, 46.4, 32.8, and 32,4 nm. The bands in obtained FTIR spectrum at 586.36, 671.23, and 410-429 cm−1 were correlated with vibrations of the Co3+ in octahedral hole, the Co2+ in tetrahedral hole, and Zn-O, respectively. The band gap energy of CoO, CoO/ZnO with variation of 1:1 and 1:3 were 4.39, 4.14, and 3.65 eV, respectively. The photocatalytic activities of CoO/ZnO were confirmed by methylene blue dyes photodegradation of 663 nm under UV light irradiation in aqueous solution. The 22.4% methylene blue can be removed within 3 h. Overall, these findings reveal the potential of CoO/ZnO for practical application.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1080)

Pages:

85-97

Citation:

Online since:

January 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. N. Zare, A. Motahari, and M. Sillanpää, Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review,, Environ. Res., vol. 162, no. January, p.173–195, 2018,.

DOI: 10.1016/j.envres.2017.12.025

Google Scholar

[2] K. Sirirerkratana, P. Kemacheevakul, and S. Chuangchote, Color removal from wastewater by photocatalytic process using titanium dioxide-coated glass, ceramic tile , and stainless steel sheets,, J. Clean. Prod., vol. 215, p.123–130, 2019,.

DOI: 10.1016/j.jclepro.2019.01.037

Google Scholar

[3] M. Deng and Y. Huang, The phenomena and mechanism for the enhanced adsorption and photocatalytic decomposition of organic dyes with Ag3PO4/graphene oxide aerogel composites,, Ceram. Int., vol. 46, no. 2, p.2565–2570, 2020,.

DOI: 10.1016/j.ceramint.2019.09.128

Google Scholar

[4] A. M. Ghaedi, S. Karamipour, A. Vafaei, M. M. Baneshi, and V. Kiarostami, Optimization and modeling of simultaneous ultrasound-assisted adsorption of ternary dyes using copper oxide nanoparticles immobilized on activated carbon using response surface methodology and artificial neural network,, Ultrason. - Sonochemistry, vol. 51, p.264–280, 2019,.

DOI: 10.1016/j.ultsonch.2018.10.007

Google Scholar

[5] S. Kayalvizhi, A. Sengottaiyan, T. Selvankumar, B. Senthilkumar, C. Sudhakar, and K. Selvam, Eco-friendly cost-effective approach for synthesis of copper oxide nanoparticles for enhanced photocatalytic performance,, Optik (Stuttg)., vol. 202, p.163507, 2019,.

DOI: 10.1016/j.ijleo.2019.163507

Google Scholar

[6] M. M. Khalaf, K. Al-Amer, and H. M. Abd El-lateef, Magnetic Fe3O4 nanocubes coated by SiO2 and TiO2 layers as nanocomposites for Cr (VI) up taking from wastewater,, Ceram. Int., vol. 45, no. 17, p.23548–23560, 2019,.

DOI: 10.1016/j.ceramint.2019.08.064

Google Scholar

[7] K. Xia, X. Liu, Z. Chen, L. Fang, H. Du, and X. Zhang, Efficient and sustainable treatment of anionic dye wastewaters using porous cationic diatomite,, J. Taiwan Inst. Chem. Eng., vol. 113, p.8–15, 2020,.

DOI: 10.1016/j.jtice.2020.07.020

Google Scholar

[8] N. Yahya, F. Aziz, N. A. Jamaludin, J. Jaafar, N. Yusof, and N. A. Ludin, Journal of Environmental Chemical Engineering A review of integrated photocatalyst adsorbents for wastewater treatment,, J. Environ. Chem. Eng., vol. 6, no. 6, p.7411–7425, 2018,.

DOI: 10.1016/j.jece.2018.06.051

Google Scholar

[9] P. Raizada, A. Sudhaik, P. Singh, P. Shandilya, P. Thakur, and H. Jung, Visible light assisted photodegradation of 2,4-dinitrophenol using Ag2CO3 loaded phosphorus and sulphur co-doped graphitic carbon nitride nanosheets in simulated wastewater,, Arab. J. Chem., vol. 13, no. 1, p.3196–3209, 2020,.

DOI: 10.1016/j.arabjc.2018.10.004

Google Scholar

[10] S. Wang et al., Solvothermal synthesis of CoO/BiVO4 p-n heterojunction with micro-nano spherical structure for enhanced visible light photocatalytic activity towards degradation of tetracycline,, Mater. Res. Bull., vol. 135, no. November 2020, p.111161, 2021,.

DOI: 10.1016/j.materresbull.2020.111161

Google Scholar

[11] Z. Lin, C. Du, B. Yan, and G. Yang, Two-dimensional amorphous CoO photocatalyst for efficient overall water splitting with high stability,, J. Catal., vol. 372, p.299–310, 2019,.

DOI: 10.1016/j.jcat.2019.03.025

Google Scholar

[12] K. Park and A. M. Kolpak, Understanding photocatalytic overall water splitting on CoO nanoparticles : Effects of facets , surface stoichiometry , and the CoO / water interface,, J. Catal., vol. 365, p.115–124, 2018,.

DOI: 10.1016/j.jcat.2018.06.021

Google Scholar

[13] M. Saeed, M. Adeel, I. Khan, N. Akram, and M. Muneer, Synthesis of p-n CoO-ZnO Heterojunction for Enhanced Visible-Light Assisted Photodegradation of Methylene Blue,, p.0–24, (2021).

DOI: 10.21203/rs.3.rs-703284/v1

Google Scholar

[14] L. Liao et al., Efficient solar water-splitting using a nanocrystalline CoO photocatalyst,, Nat. Nanotechnol., vol. 9, no. 1, p.69–73, 2013,.

Google Scholar

[15] W. Shi et al., New Insight of Water-Splitting Photocatalyst: H2O2-Resistance Poisoning and Photothermal Deactivation in Sub-micrometer CoO Octahedrons,, ACS Appl. Mater. Interfaces, vol. 9, no. 24, p.20585–20593, 2017,.

DOI: 10.1021/acsami.7b04286

Google Scholar

[16] F. H. Abdullah, N. H. H. Abu Bakar, and M. Abu Bakar, Low temperature biosynthesis of crystalline zinc oxide nanoparticles from Musa acuminata peel extract for visible-light degradation of methylene blue,, Optik (Stuttg)., vol. 206, no. January, p.164279, 2020,.

DOI: 10.1016/j.ijleo.2020.164279

Google Scholar

[17] M. Adeel, M. Saeed, I. Khan, M. Muneer, and N. Akram, Synthesis and Characterization of Co−ZnO and Evaluation of Its Photocatalytic Activity for Photodegradation of Methyl Orange,, vol. 6, p.1426–1435, 2021,.

DOI: 10.1021/acsomega.0c05092

Google Scholar

[18] C. M. Taylor, A. Ramirez-Canon, J. Wenk, and D. Mattia, Enhancing the photo-corrosion resistance of ZnO nanowire photocatalysts,, J. Hazard. Mater., vol. 378, no. March, p.120799, 2019,.

DOI: 10.1016/j.jhazmat.2019.120799

Google Scholar

[19] B. Mani and S. K. Samdarshi, ZnO and Co-ZnO nanorods — Complementary role of oxygen vacancy in photocatalytic activity of under UV and visible radiation flux,, Mater. Sci. Eng. B, vol. 182, p.21–28, 2014,.

DOI: 10.1016/j.mseb.2013.11.013

Google Scholar

[20] Q. Xiao, J. Zhang, C. Xiao, and X. Tan, Photocatalytic decolorization of methylene blue over Zn1 − xCoxO under visible light irradiation,, Mater. Sci. Eng. B, vol. 142, p.121–125, 2007,.

DOI: 10.1016/j.mseb.2007.06.021

Google Scholar

[21] E. Suharyadi, A. Muzakki, N. I. Istiqomah, D. L. Puspitarum, B. Purnama, and D. Djuhana, Reusability of Photocatalytic CoFe2O4 @ZnO Core–Shell Nanoparticles for Dye Degradation ,, ECS J. Solid State Sci. Technol., vol. 11, no. 2, p.023004, 2022,.

DOI: 10.1149/2162-8777/ac4c7c

Google Scholar

[22] A.K.P.D. Savio, J. Fletcher, K. Smith, R. Iyer, J.M. Bao, and F. C. Robles Hernández, Environmentally effective photocatalyst CoO-TiO2 synthesized by thermal precipitation of Co in amorphous TiO2,, Appl. Catal. B Environ., vol. 182, p.449–455, 2016,.

DOI: 10.1016/j.apcatb.2015.09.047

Google Scholar

[23] A. E. Ramírez et al., Significantly enhancement of sunlight photocatalytic performance of ZnO by doping with transition metal oxides,, Sci. Rep., vol. 11, no. 0123456789, p.2804, 2021,.

DOI: 10.1038/s41598-020-78568-9

Google Scholar

[24] S. Roguai and A. Djelloul, Structural, microstructural and photocatalytic degradation of methylene blue of zinc oxide and Fe-doped ZnO nanoparticles prepared by simple coprecipitation method,, Solid State Commun., vol. 334–335, no. May, p.114362, 2021,.

DOI: 10.1016/j.ssc.2021.114362

Google Scholar

[25] M. Darbandi, E. Narimani, P. Y. Sefidi, H. Rasouli, and M. G. Hosseini, Synthesis of hexagonal cobalt hydroxide and cobalt oxide nanorings as promising materials for oxygen evolution and supercapacitive processes,, Int. J. Hydrogen Energy, vol. 46, no. 5, p.3887–3897, 2021,.

DOI: 10.1016/j.ijhydene.2020.10.209

Google Scholar

[26] B. Salameh, A. M. Alsmadi, and M. Shatnawi, Effects of Co concentration and annealing on the magnetic properties of Co-doped ZnO films: Role of oxygen vacancies on the ferromagnetic ordering,, J. Alloys Compd., vol. 835, p.155287, 2020,.

DOI: 10.1016/j.jallcom.2020.155287

Google Scholar

[27] I. V. Golosovsky et al., Zinc blende and wurtzite CoO polymorph nanoparticles: Rational synthesis and commensurate and incommensurate magnetic order,, Appl. Mater. Today, vol. 16, p.322–331, 2019,.

DOI: 10.1016/j.apmt.2019.06.005

Google Scholar

[28] X. Zhou, F. Chen, F. Cao, W. Shen, J. Liu, and X. Xu, Nanostructured hexagonal cobalt oxide plates and their electrochemical properties,, Mater. Lett., vol. 180, no. 3, p.175–178, 2016,.

DOI: 10.1016/j.matlet.2016.05.136

Google Scholar

[29] G. M. Al-Senani, N. M. Deraz, and O. H. Abd-Elkader, Magnetic and characterization studies of CoO/Co3O4 nanocomposite,, Processes, vol. 8, no. 7, p.844, 2020,.

DOI: 10.3390/pr8070844

Google Scholar

[30] V. R. Shinde, S. B. Mahadik, T. P. Gujar, and C. D. Lokhande, Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis,, Appl. Surf. Sci., vol. 252, no. 20, p.7487–7492, 2006,.

DOI: 10.1016/j.apsusc.2005.09.004

Google Scholar

[31] M. K. Rendale, S. N. Mathad, and V. Puri, Thick films of magnesium zinc ferrite with lithium substitution: Structural characteristics,, Int. J. Self-Propagating High-Temperature Synth., vol. 24, no. 2, p.78–82, 2015,.

DOI: 10.3103/s1061386215020053

Google Scholar

[32] R. Anandhi, R. Mohan, K. Swaminathan, and K. Ravichandran, Influence of aging time of the starting solution on the physical properties of fluorine doped zinc oxide films deposited by a simplified spray pyrolysis technique,, Superlattices Microstruct., vol. 51, no. 5, p.680–689, 2012,.

DOI: 10.1016/j.spmi.2012.02.006

Google Scholar

[33] P. J, N. Kottam, and R. A, Investigation of photocatalytic degradation of crystal violet and its correlation with bandgap in ZnO and ZnO/GO nanohybrid,, Inorg. Chem. Commun., vol. 125, no. January, p.108460, 2021,.

DOI: 10.1016/j.inoche.2021.108460

Google Scholar

[34] Y. Liu, G. Zhu, B. Ge, H. Zhou, A. Yuan, and X. Shen, Concave Co3O4 octahedral mesocrystal: Polymer-mediated synthesis and sensing properties,, CrystEngComm, vol. 14, no. 19, p.6264–6270, 2012,.

DOI: 10.1039/c2ce25788b

Google Scholar

[35] T. He, D. Chen, X. Jiao, Y. Xu, and Y. Gu, Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size,, Langmuir, vol. 20, no. 19, p.8404–8408, 2004,.

DOI: 10.1021/la0488710

Google Scholar

[36] S. Jandl and J. Deslandes, Infrared spectra of Ferrites,, Phys. Rev. B, vol. 24, no. 2, p.1040–1044, 1981,.

Google Scholar

[37] J. Lu et al., The assessment of photocatalytic activity of zinc oxide nanoparticles from the roots of Codonopsis lanceolata synthesized by one-pot green synthesis method,, Optik (Stuttg)., vol. 184, no. March, p.82–89, 2019,.

DOI: 10.1016/j.ijleo.2019.03.050

Google Scholar

[38] Y. Zhang, B. Sepúlveda, G. Elvira, A. Serr, J. Michler, and L. Philippe, Highly reduced ecotoxicity of ZnO-based micro / nanostructures on aquatic biota : Influence of architecture , chemical composition, fixation, and photocatalytic efficiency,, Water Res., vol. 169, p.115210, 2020,.

DOI: 10.1016/j.watres.2019.115210

Google Scholar

[39] P. Pooseekheaw, W. Thongpan, E. Kantarak, W. sroila, T. Kumpika, and P. Singjai, Effect of magnetic field on improvement of photocatalytic performance of V2O5/TiO2 nanoheterostructure films prepared by sparking method,, Sci. Rep., vol. 12, no. 1, p.1–6, 2022,.

DOI: 10.1038/s41598-022-05015-2

Google Scholar

[40] M. H. Elsayed et al., Direct sunlight-active Na-doped ZnO photocatalyst for the mineralization of organic pollutants at different pH mediums,, J. Taiwan Inst. Chem. Eng., vol. 115, p.187–197, 2020,.

DOI: 10.1016/j.jtice.2020.10.018

Google Scholar

[41] C. Diaz-uribe, W. Vallejo, E. Romero, M. Villareal, E. Schott, and X. Zarate, TiO2 thin films sensitization with natural dyes extracted from Bactris guineensis for photocatalytic applications : Experimental and DFT study,, p.407–416, 2020,.

DOI: 10.1016/j.jscs.2020.03.004

Google Scholar

[42] J. K. Sharma, P. Srivastava, G. Singh, M. S. Akhtar, and S. Ameen, Green synthesis of Co3 O4 nanoparticles and their applications in thermal decomposition of ammonium perchlorate and dye-sensitized solar cells,, Mater. Sci. Eng. B, vol. 193, p.181–188, 2015,.

DOI: 10.1016/j.mseb.2014.12.012

Google Scholar

[43] X. Yang et al., Electric Papers of Graphene-Coated Co3O4 Fibers for High-Performance Lithium-Ion Batteries,, ACS Mater. Interfaces, vol. 5, p.997–1002, (2013).

DOI: 10.1021/am302685t

Google Scholar

[44] M. V Reddy, G. V. S. Rao, and B. V. R. Chowdari, Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries,, Chem. Rev., vol. 113, p.5364–5457, (2013).

DOI: 10.1021/cr3001884

Google Scholar

[45] K. Behzad and D. Dorranian, Effect of calcination temperature on the size and optical properties of synthesized ZnO nanoparticles,, J. Ovonic Res., vol. 12, p.75–80, (2016).

Google Scholar

[46] X. Chen, H. Sun, J. Zhang, Y. Guo, and D. H. Kuo, Cationic S-doped TiO2/SiO2 visible-light photocatalyst synthesized by co-hydrolysis method and its application for organic degradation,, J. Mol. Liq., vol. 273, p.50–57, 2019,.

DOI: 10.1016/j.molliq.2018.10.021

Google Scholar

[47] F. Febiyanto et al., Facile synthesis of Ag3PO4 photocatalyst with varied ammonia concentration and its photocatalytic activities for dye removal,, Bull. Chem. React. Eng. & Catal., vol. 14, no. 1, p.42–50, 2019,.

DOI: 10.9767/bcrec.14.1.2549.42-50

Google Scholar

[48] K. V. Karthik et al., Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants,, Chemosphere, vol. 287, no. P2, p.132081, 2022,.

DOI: 10.1016/j.chemosphere.2021.132081

Google Scholar

[49] Y. M. Hunge, A. A. Yadav, S. W. Kang, S. Jun Lim, and H. Kim, Visible light activated MoS2/ZnO composites for photocatalytic degradation of ciprofloxacin antibiotic and hydrogen production,, J. Photochem. Photobiol. A Chem., vol. 434, no. June 2022, p.114250, 2023,.

DOI: 10.1016/j.jphotochem.2022.114250

Google Scholar

[50] M. A. Dil, A. Haghighatzadeh, and B. Mazinani, Photosensitization effect on visible-light-induced photocatalytic performance of TiO2/chlorophyll and flavonoid nanostructures: kinetic and isotherm studies,, Bull. Mater. Sci., vol. 42, no. 5, p.248, 2019,.

DOI: 10.1007/s12034-019-1927-9

Google Scholar

[51] S. M. Tabrizi Hafez Moghaddas, B. Elahi, and V. Javanbakht, Biosynthesis of pure zinc oxide nanoparticles using Quince seed mucilage for photocatalytic dye degradation,, J. Alloys Compd., vol. 821, p.153519, 2020,.

DOI: 10.1016/j.jallcom.2019.153519

Google Scholar

[52] S. K. Noukelag, L. C. Razanamahandry, S. K. O. Ntwampe, C. J. Arendse, and M. Maaza, Industrial dye removal using bio-synthesized Ag-doped ZnO nanoparticles,, Environ. Nanotechnology, Monit. Manag., vol. 16, no. October 2020, p.100463, 2021,.

DOI: 10.1016/j.enmm.2021.100463

Google Scholar

[53] M. A. Mohamed et al., Revealing the role of kapok fibre as bio-template for In-situ construction of C-doped g-C3N4@C, N co-doped TiO2 core-shell heterojunction photocatalyst and its photocatalytic hydrogen production performance,, Appl. Surf. Sci., vol. 476, no. November 2018, p.205–220, 2019,.

DOI: 10.1016/j.apsusc.2019.01.080

Google Scholar

[54] G. Rytwo and A. L. Zelkind, Evaluation of kinetic pseudo-order in the photocatalytic degradation of ofloxacin,, Catalysts, vol. 12, no. 1, p.1–11, 2022,.

DOI: 10.3390/catal12010024

Google Scholar

[55] J. F. Leal, V. I. Esteves, and E. B. H. Santos, Does light-screening by humic substances completely explain their retardation effect on contaminants photo-degradation?,, J. Environ. Chem. Eng., vol. 3, no. 4, p.3015–3019, 2015,.

DOI: 10.1016/j.jece.2014.12.025

Google Scholar

[56] Y. Y. Tong et al., The prominent photocatalytic activity with the charge transfer in the organic ligand for [Zn4O(BDC)3] MOF-5 decorated Ag3PO4 hybrids,, Sep. Purif. Technol., vol. 250, no. February, p.117142, 2020,.

DOI: 10.1016/j.seppur.2020.117142

Google Scholar

[57] P. Raizada et al., Engineering nanostructures of CuO-based photocatalysts for water treatment: Current progress and future challenges,, Arab. J. Chem., vol. 13, no. 11, p.8424–8457, 2020,.

DOI: 10.1016/j.arabjc.2020.06.031

Google Scholar

[58] M. Afif, U. Sulaeman, A. Riapanitra, R. Andreas, and S. Yin, Use of Mn doping to suppress defect sites in Ag3PO4 : Applications in photocatalysis,, Appl. Surf. Sci., vol. 466, p.352–357, 2019,.

DOI: 10.1016/j.apsusc.2018.10.049

Google Scholar

[59] H. Y. Al-Gubury and Q. Y. Mohammed, Prepared coupled ZnO-Co2O3 then study the photocatalytic activities using crystal violet dye,, J. Chem. Pharm. Sci., vol. 9, no. 3, p.1161–1165, (2016).

Google Scholar