[1]
E. N. Zare, A. Motahari, and M. Sillanpää, Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review,, Environ. Res., vol. 162, no. January, p.173–195, 2018,.
DOI: 10.1016/j.envres.2017.12.025
Google Scholar
[2]
K. Sirirerkratana, P. Kemacheevakul, and S. Chuangchote, Color removal from wastewater by photocatalytic process using titanium dioxide-coated glass, ceramic tile , and stainless steel sheets,, J. Clean. Prod., vol. 215, p.123–130, 2019,.
DOI: 10.1016/j.jclepro.2019.01.037
Google Scholar
[3]
M. Deng and Y. Huang, The phenomena and mechanism for the enhanced adsorption and photocatalytic decomposition of organic dyes with Ag3PO4/graphene oxide aerogel composites,, Ceram. Int., vol. 46, no. 2, p.2565–2570, 2020,.
DOI: 10.1016/j.ceramint.2019.09.128
Google Scholar
[4]
A. M. Ghaedi, S. Karamipour, A. Vafaei, M. M. Baneshi, and V. Kiarostami, Optimization and modeling of simultaneous ultrasound-assisted adsorption of ternary dyes using copper oxide nanoparticles immobilized on activated carbon using response surface methodology and artificial neural network,, Ultrason. - Sonochemistry, vol. 51, p.264–280, 2019,.
DOI: 10.1016/j.ultsonch.2018.10.007
Google Scholar
[5]
S. Kayalvizhi, A. Sengottaiyan, T. Selvankumar, B. Senthilkumar, C. Sudhakar, and K. Selvam, Eco-friendly cost-effective approach for synthesis of copper oxide nanoparticles for enhanced photocatalytic performance,, Optik (Stuttg)., vol. 202, p.163507, 2019,.
DOI: 10.1016/j.ijleo.2019.163507
Google Scholar
[6]
M. M. Khalaf, K. Al-Amer, and H. M. Abd El-lateef, Magnetic Fe3O4 nanocubes coated by SiO2 and TiO2 layers as nanocomposites for Cr (VI) up taking from wastewater,, Ceram. Int., vol. 45, no. 17, p.23548–23560, 2019,.
DOI: 10.1016/j.ceramint.2019.08.064
Google Scholar
[7]
K. Xia, X. Liu, Z. Chen, L. Fang, H. Du, and X. Zhang, Efficient and sustainable treatment of anionic dye wastewaters using porous cationic diatomite,, J. Taiwan Inst. Chem. Eng., vol. 113, p.8–15, 2020,.
DOI: 10.1016/j.jtice.2020.07.020
Google Scholar
[8]
N. Yahya, F. Aziz, N. A. Jamaludin, J. Jaafar, N. Yusof, and N. A. Ludin, Journal of Environmental Chemical Engineering A review of integrated photocatalyst adsorbents for wastewater treatment,, J. Environ. Chem. Eng., vol. 6, no. 6, p.7411–7425, 2018,.
DOI: 10.1016/j.jece.2018.06.051
Google Scholar
[9]
P. Raizada, A. Sudhaik, P. Singh, P. Shandilya, P. Thakur, and H. Jung, Visible light assisted photodegradation of 2,4-dinitrophenol using Ag2CO3 loaded phosphorus and sulphur co-doped graphitic carbon nitride nanosheets in simulated wastewater,, Arab. J. Chem., vol. 13, no. 1, p.3196–3209, 2020,.
DOI: 10.1016/j.arabjc.2018.10.004
Google Scholar
[10]
S. Wang et al., Solvothermal synthesis of CoO/BiVO4 p-n heterojunction with micro-nano spherical structure for enhanced visible light photocatalytic activity towards degradation of tetracycline,, Mater. Res. Bull., vol. 135, no. November 2020, p.111161, 2021,.
DOI: 10.1016/j.materresbull.2020.111161
Google Scholar
[11]
Z. Lin, C. Du, B. Yan, and G. Yang, Two-dimensional amorphous CoO photocatalyst for efficient overall water splitting with high stability,, J. Catal., vol. 372, p.299–310, 2019,.
DOI: 10.1016/j.jcat.2019.03.025
Google Scholar
[12]
K. Park and A. M. Kolpak, Understanding photocatalytic overall water splitting on CoO nanoparticles : Effects of facets , surface stoichiometry , and the CoO / water interface,, J. Catal., vol. 365, p.115–124, 2018,.
DOI: 10.1016/j.jcat.2018.06.021
Google Scholar
[13]
M. Saeed, M. Adeel, I. Khan, N. Akram, and M. Muneer, Synthesis of p-n CoO-ZnO Heterojunction for Enhanced Visible-Light Assisted Photodegradation of Methylene Blue,, p.0–24, (2021).
DOI: 10.21203/rs.3.rs-703284/v1
Google Scholar
[14]
L. Liao et al., Efficient solar water-splitting using a nanocrystalline CoO photocatalyst,, Nat. Nanotechnol., vol. 9, no. 1, p.69–73, 2013,.
Google Scholar
[15]
W. Shi et al., New Insight of Water-Splitting Photocatalyst: H2O2-Resistance Poisoning and Photothermal Deactivation in Sub-micrometer CoO Octahedrons,, ACS Appl. Mater. Interfaces, vol. 9, no. 24, p.20585–20593, 2017,.
DOI: 10.1021/acsami.7b04286
Google Scholar
[16]
F. H. Abdullah, N. H. H. Abu Bakar, and M. Abu Bakar, Low temperature biosynthesis of crystalline zinc oxide nanoparticles from Musa acuminata peel extract for visible-light degradation of methylene blue,, Optik (Stuttg)., vol. 206, no. January, p.164279, 2020,.
DOI: 10.1016/j.ijleo.2020.164279
Google Scholar
[17]
M. Adeel, M. Saeed, I. Khan, M. Muneer, and N. Akram, Synthesis and Characterization of Co−ZnO and Evaluation of Its Photocatalytic Activity for Photodegradation of Methyl Orange,, vol. 6, p.1426–1435, 2021,.
DOI: 10.1021/acsomega.0c05092
Google Scholar
[18]
C. M. Taylor, A. Ramirez-Canon, J. Wenk, and D. Mattia, Enhancing the photo-corrosion resistance of ZnO nanowire photocatalysts,, J. Hazard. Mater., vol. 378, no. March, p.120799, 2019,.
DOI: 10.1016/j.jhazmat.2019.120799
Google Scholar
[19]
B. Mani and S. K. Samdarshi, ZnO and Co-ZnO nanorods — Complementary role of oxygen vacancy in photocatalytic activity of under UV and visible radiation flux,, Mater. Sci. Eng. B, vol. 182, p.21–28, 2014,.
DOI: 10.1016/j.mseb.2013.11.013
Google Scholar
[20]
Q. Xiao, J. Zhang, C. Xiao, and X. Tan, Photocatalytic decolorization of methylene blue over Zn1 − xCoxO under visible light irradiation,, Mater. Sci. Eng. B, vol. 142, p.121–125, 2007,.
DOI: 10.1016/j.mseb.2007.06.021
Google Scholar
[21]
E. Suharyadi, A. Muzakki, N. I. Istiqomah, D. L. Puspitarum, B. Purnama, and D. Djuhana, Reusability of Photocatalytic CoFe2O4 @ZnO Core–Shell Nanoparticles for Dye Degradation ,, ECS J. Solid State Sci. Technol., vol. 11, no. 2, p.023004, 2022,.
DOI: 10.1149/2162-8777/ac4c7c
Google Scholar
[22]
A.K.P.D. Savio, J. Fletcher, K. Smith, R. Iyer, J.M. Bao, and F. C. Robles Hernández, Environmentally effective photocatalyst CoO-TiO2 synthesized by thermal precipitation of Co in amorphous TiO2,, Appl. Catal. B Environ., vol. 182, p.449–455, 2016,.
DOI: 10.1016/j.apcatb.2015.09.047
Google Scholar
[23]
A. E. Ramírez et al., Significantly enhancement of sunlight photocatalytic performance of ZnO by doping with transition metal oxides,, Sci. Rep., vol. 11, no. 0123456789, p.2804, 2021,.
DOI: 10.1038/s41598-020-78568-9
Google Scholar
[24]
S. Roguai and A. Djelloul, Structural, microstructural and photocatalytic degradation of methylene blue of zinc oxide and Fe-doped ZnO nanoparticles prepared by simple coprecipitation method,, Solid State Commun., vol. 334–335, no. May, p.114362, 2021,.
DOI: 10.1016/j.ssc.2021.114362
Google Scholar
[25]
M. Darbandi, E. Narimani, P. Y. Sefidi, H. Rasouli, and M. G. Hosseini, Synthesis of hexagonal cobalt hydroxide and cobalt oxide nanorings as promising materials for oxygen evolution and supercapacitive processes,, Int. J. Hydrogen Energy, vol. 46, no. 5, p.3887–3897, 2021,.
DOI: 10.1016/j.ijhydene.2020.10.209
Google Scholar
[26]
B. Salameh, A. M. Alsmadi, and M. Shatnawi, Effects of Co concentration and annealing on the magnetic properties of Co-doped ZnO films: Role of oxygen vacancies on the ferromagnetic ordering,, J. Alloys Compd., vol. 835, p.155287, 2020,.
DOI: 10.1016/j.jallcom.2020.155287
Google Scholar
[27]
I. V. Golosovsky et al., Zinc blende and wurtzite CoO polymorph nanoparticles: Rational synthesis and commensurate and incommensurate magnetic order,, Appl. Mater. Today, vol. 16, p.322–331, 2019,.
DOI: 10.1016/j.apmt.2019.06.005
Google Scholar
[28]
X. Zhou, F. Chen, F. Cao, W. Shen, J. Liu, and X. Xu, Nanostructured hexagonal cobalt oxide plates and their electrochemical properties,, Mater. Lett., vol. 180, no. 3, p.175–178, 2016,.
DOI: 10.1016/j.matlet.2016.05.136
Google Scholar
[29]
G. M. Al-Senani, N. M. Deraz, and O. H. Abd-Elkader, Magnetic and characterization studies of CoO/Co3O4 nanocomposite,, Processes, vol. 8, no. 7, p.844, 2020,.
DOI: 10.3390/pr8070844
Google Scholar
[30]
V. R. Shinde, S. B. Mahadik, T. P. Gujar, and C. D. Lokhande, Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis,, Appl. Surf. Sci., vol. 252, no. 20, p.7487–7492, 2006,.
DOI: 10.1016/j.apsusc.2005.09.004
Google Scholar
[31]
M. K. Rendale, S. N. Mathad, and V. Puri, Thick films of magnesium zinc ferrite with lithium substitution: Structural characteristics,, Int. J. Self-Propagating High-Temperature Synth., vol. 24, no. 2, p.78–82, 2015,.
DOI: 10.3103/s1061386215020053
Google Scholar
[32]
R. Anandhi, R. Mohan, K. Swaminathan, and K. Ravichandran, Influence of aging time of the starting solution on the physical properties of fluorine doped zinc oxide films deposited by a simplified spray pyrolysis technique,, Superlattices Microstruct., vol. 51, no. 5, p.680–689, 2012,.
DOI: 10.1016/j.spmi.2012.02.006
Google Scholar
[33]
P. J, N. Kottam, and R. A, Investigation of photocatalytic degradation of crystal violet and its correlation with bandgap in ZnO and ZnO/GO nanohybrid,, Inorg. Chem. Commun., vol. 125, no. January, p.108460, 2021,.
DOI: 10.1016/j.inoche.2021.108460
Google Scholar
[34]
Y. Liu, G. Zhu, B. Ge, H. Zhou, A. Yuan, and X. Shen, Concave Co3O4 octahedral mesocrystal: Polymer-mediated synthesis and sensing properties,, CrystEngComm, vol. 14, no. 19, p.6264–6270, 2012,.
DOI: 10.1039/c2ce25788b
Google Scholar
[35]
T. He, D. Chen, X. Jiao, Y. Xu, and Y. Gu, Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size,, Langmuir, vol. 20, no. 19, p.8404–8408, 2004,.
DOI: 10.1021/la0488710
Google Scholar
[36]
S. Jandl and J. Deslandes, Infrared spectra of Ferrites,, Phys. Rev. B, vol. 24, no. 2, p.1040–1044, 1981,.
Google Scholar
[37]
J. Lu et al., The assessment of photocatalytic activity of zinc oxide nanoparticles from the roots of Codonopsis lanceolata synthesized by one-pot green synthesis method,, Optik (Stuttg)., vol. 184, no. March, p.82–89, 2019,.
DOI: 10.1016/j.ijleo.2019.03.050
Google Scholar
[38]
Y. Zhang, B. Sepúlveda, G. Elvira, A. Serr, J. Michler, and L. Philippe, Highly reduced ecotoxicity of ZnO-based micro / nanostructures on aquatic biota : Influence of architecture , chemical composition, fixation, and photocatalytic efficiency,, Water Res., vol. 169, p.115210, 2020,.
DOI: 10.1016/j.watres.2019.115210
Google Scholar
[39]
P. Pooseekheaw, W. Thongpan, E. Kantarak, W. sroila, T. Kumpika, and P. Singjai, Effect of magnetic field on improvement of photocatalytic performance of V2O5/TiO2 nanoheterostructure films prepared by sparking method,, Sci. Rep., vol. 12, no. 1, p.1–6, 2022,.
DOI: 10.1038/s41598-022-05015-2
Google Scholar
[40]
M. H. Elsayed et al., Direct sunlight-active Na-doped ZnO photocatalyst for the mineralization of organic pollutants at different pH mediums,, J. Taiwan Inst. Chem. Eng., vol. 115, p.187–197, 2020,.
DOI: 10.1016/j.jtice.2020.10.018
Google Scholar
[41]
C. Diaz-uribe, W. Vallejo, E. Romero, M. Villareal, E. Schott, and X. Zarate, TiO2 thin films sensitization with natural dyes extracted from Bactris guineensis for photocatalytic applications : Experimental and DFT study,, p.407–416, 2020,.
DOI: 10.1016/j.jscs.2020.03.004
Google Scholar
[42]
J. K. Sharma, P. Srivastava, G. Singh, M. S. Akhtar, and S. Ameen, Green synthesis of Co3 O4 nanoparticles and their applications in thermal decomposition of ammonium perchlorate and dye-sensitized solar cells,, Mater. Sci. Eng. B, vol. 193, p.181–188, 2015,.
DOI: 10.1016/j.mseb.2014.12.012
Google Scholar
[43]
X. Yang et al., Electric Papers of Graphene-Coated Co3O4 Fibers for High-Performance Lithium-Ion Batteries,, ACS Mater. Interfaces, vol. 5, p.997–1002, (2013).
DOI: 10.1021/am302685t
Google Scholar
[44]
M. V Reddy, G. V. S. Rao, and B. V. R. Chowdari, Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries,, Chem. Rev., vol. 113, p.5364–5457, (2013).
DOI: 10.1021/cr3001884
Google Scholar
[45]
K. Behzad and D. Dorranian, Effect of calcination temperature on the size and optical properties of synthesized ZnO nanoparticles,, J. Ovonic Res., vol. 12, p.75–80, (2016).
Google Scholar
[46]
X. Chen, H. Sun, J. Zhang, Y. Guo, and D. H. Kuo, Cationic S-doped TiO2/SiO2 visible-light photocatalyst synthesized by co-hydrolysis method and its application for organic degradation,, J. Mol. Liq., vol. 273, p.50–57, 2019,.
DOI: 10.1016/j.molliq.2018.10.021
Google Scholar
[47]
F. Febiyanto et al., Facile synthesis of Ag3PO4 photocatalyst with varied ammonia concentration and its photocatalytic activities for dye removal,, Bull. Chem. React. Eng. & Catal., vol. 14, no. 1, p.42–50, 2019,.
DOI: 10.9767/bcrec.14.1.2549.42-50
Google Scholar
[48]
K. V. Karthik et al., Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants,, Chemosphere, vol. 287, no. P2, p.132081, 2022,.
DOI: 10.1016/j.chemosphere.2021.132081
Google Scholar
[49]
Y. M. Hunge, A. A. Yadav, S. W. Kang, S. Jun Lim, and H. Kim, Visible light activated MoS2/ZnO composites for photocatalytic degradation of ciprofloxacin antibiotic and hydrogen production,, J. Photochem. Photobiol. A Chem., vol. 434, no. June 2022, p.114250, 2023,.
DOI: 10.1016/j.jphotochem.2022.114250
Google Scholar
[50]
M. A. Dil, A. Haghighatzadeh, and B. Mazinani, Photosensitization effect on visible-light-induced photocatalytic performance of TiO2/chlorophyll and flavonoid nanostructures: kinetic and isotherm studies,, Bull. Mater. Sci., vol. 42, no. 5, p.248, 2019,.
DOI: 10.1007/s12034-019-1927-9
Google Scholar
[51]
S. M. Tabrizi Hafez Moghaddas, B. Elahi, and V. Javanbakht, Biosynthesis of pure zinc oxide nanoparticles using Quince seed mucilage for photocatalytic dye degradation,, J. Alloys Compd., vol. 821, p.153519, 2020,.
DOI: 10.1016/j.jallcom.2019.153519
Google Scholar
[52]
S. K. Noukelag, L. C. Razanamahandry, S. K. O. Ntwampe, C. J. Arendse, and M. Maaza, Industrial dye removal using bio-synthesized Ag-doped ZnO nanoparticles,, Environ. Nanotechnology, Monit. Manag., vol. 16, no. October 2020, p.100463, 2021,.
DOI: 10.1016/j.enmm.2021.100463
Google Scholar
[53]
M. A. Mohamed et al., Revealing the role of kapok fibre as bio-template for In-situ construction of C-doped g-C3N4@C, N co-doped TiO2 core-shell heterojunction photocatalyst and its photocatalytic hydrogen production performance,, Appl. Surf. Sci., vol. 476, no. November 2018, p.205–220, 2019,.
DOI: 10.1016/j.apsusc.2019.01.080
Google Scholar
[54]
G. Rytwo and A. L. Zelkind, Evaluation of kinetic pseudo-order in the photocatalytic degradation of ofloxacin,, Catalysts, vol. 12, no. 1, p.1–11, 2022,.
DOI: 10.3390/catal12010024
Google Scholar
[55]
J. F. Leal, V. I. Esteves, and E. B. H. Santos, Does light-screening by humic substances completely explain their retardation effect on contaminants photo-degradation?,, J. Environ. Chem. Eng., vol. 3, no. 4, p.3015–3019, 2015,.
DOI: 10.1016/j.jece.2014.12.025
Google Scholar
[56]
Y. Y. Tong et al., The prominent photocatalytic activity with the charge transfer in the organic ligand for [Zn4O(BDC)3] MOF-5 decorated Ag3PO4 hybrids,, Sep. Purif. Technol., vol. 250, no. February, p.117142, 2020,.
DOI: 10.1016/j.seppur.2020.117142
Google Scholar
[57]
P. Raizada et al., Engineering nanostructures of CuO-based photocatalysts for water treatment: Current progress and future challenges,, Arab. J. Chem., vol. 13, no. 11, p.8424–8457, 2020,.
DOI: 10.1016/j.arabjc.2020.06.031
Google Scholar
[58]
M. Afif, U. Sulaeman, A. Riapanitra, R. Andreas, and S. Yin, Use of Mn doping to suppress defect sites in Ag3PO4 : Applications in photocatalysis,, Appl. Surf. Sci., vol. 466, p.352–357, 2019,.
DOI: 10.1016/j.apsusc.2018.10.049
Google Scholar
[59]
H. Y. Al-Gubury and Q. Y. Mohammed, Prepared coupled ZnO-Co2O3 then study the photocatalytic activities using crystal violet dye,, J. Chem. Pharm. Sci., vol. 9, no. 3, p.1161–1165, (2016).
Google Scholar