Various Low Magnetic Field Effect on Electrochemical Performance of Asymmetric Supercapacitor MnO2- Carbon-Based Composites

Article Preview

Abstract:

Application of energy storage systems such as supercapacitors can not be separated from the magnetic fields effect. In the last decade, it’s rare to find research reports about various low magnetic field effects on supercapacitor performance. Asymmetric supercapacitors based on MnO2-Carbon were made to analyze its electrochemical performance changes by magnetic field in 0-50 mT. Magnetic field was applied in flow direction from cathode (MnO2-C) to anode (C) during electrochemical performance test using Galvanostatic Charge-Discharge (C-D) instrument. The electrochemical performance was increasing in charging (91%) and discharging (22%) time of asymmetric supercapacitors. Impressively, the 50 mT magnetic field showed a high specific capacitance of 61.9 F/g at 0.1 A/g. The supercapacitor system delivers specific energy (17.8 Wh/kg), specific power density (329.72 W/kg), and outstanding stability (79% in 50 cycles). The electrochemical improvement by magnetic field indicates a highly promising application of this method in future supercapacitor devices.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1080)

Pages:

99-105

Citation:

Online since:

January 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Shen et al., Facile hydrothermal synthesis of actiniaria-shaped α-MnO2/activated carbon and its electrochemical performances of supercapacitor,, J. Alloys Compd., vol. 770, hal. 926–933, 2019,.

DOI: 10.1016/j.jallcom.2018.08.228

Google Scholar

[2] M. E. Sahin, F. ; Blaabjerg, dan A. Sangwongwanich, A Review on Supercapacitor Materials and Developments,, Turkish J. Mater., vol. 5, no. 2, hal. 10–24, 2020, [Daring]. Tersedia pada: https://www.scienceliterature.com/index.php/tjom/article/view/10-24.

Google Scholar

[3] H. Xie, X. Liu, R. Wu, J. Liu, J. Wu, dan L. Li, High-Performance Supercapacitor with Faster Energy Storage and Long Cyclic Life Based on CuO@MnO2Nano-Core-Shell Array on Carbon Fiber Surface,, ACS Appl. Energy Mater., vol. 3, no. 8, hal. 7325–7334, 2020,.

DOI: 10.1021/acsaem.0c00590

Google Scholar

[4] M. Z. Iqbal, M. M. Faisal, dan S. R. Ali, Integration of supercapacitors and batteries towards high-performance hybrid energy storage devices,, Int. J. Energy Res., vol. 45, no. 2, hal. 1449–1479, 2021,.

DOI: 10.1002/er.5954

Google Scholar

[5] M. Alzaid, M. Z. Iqbal, S. Siddique, dan N. M. A. Hadia, Exploring the electrochemical performance of copper-doped cobalt-manganese phosphates for potential supercapattery applications,, RSC Adv., vol. 11, no. 45, hal. 28042–28051, 2021,.

DOI: 10.1039/d0ra09952j

Google Scholar

[6] G. Z. Chen, Supercapacitor and supercapattery as emerging electrochemical energy stores,, Int. Mater. Rev., vol. 62, no. 4, hal. 173–202, 2017,.

Google Scholar

[7] X. Song, Y. Zhang, dan C. Chang, Novel method for preparing activated carbons with high specific surface area from rice husk,, Ind. Eng. Chem. Res., vol. 51, no. 46, hal. 15075–15081, 2012,.

DOI: 10.1021/ie3012853

Google Scholar

[8] M. Doloksaribu, Harsojo, K. Triyana, dan B. Prihandoko, The effect of concentration nanoparticles MnO2 DOPED in activated carbon as supercapacitor electrodes,, Int. J. Appl. Eng. Res., vol. 12, no. 19, hal. 8625–8631, (2017).

Google Scholar

[9] D. J. Tarimo et al., Enhanced electrochemical performance of supercapattery derived from sulphur-reduced graphene oxide/cobalt oxide composite and activated carbon from peanut shells,, Int. J. Hydrogen Energy, vol. 45, no. 58, hal. 33059–33075, 2020,.

DOI: 10.1016/j.ijhydene.2020.09.142

Google Scholar

[10] A. J. Paleo, P. Staiti, A. Brigandì, F. N. Ferreira, A. M. Rocha, dan F. Lufrano, Supercapacitors based on AC/MnO2 deposited onto dip-coated carbon nanofiber cotton fabric electrodes,, Energy Storage Mater., vol. 12, hal. 204–215, 2018,.

DOI: 10.1016/j.ensm.2017.12.013

Google Scholar

[11] L. Pan, K. X. Wang, X. D. Zhu, X. M. Xie, dan Y. T. Liu, Hierarchical assembly of SnO2 nanowires on MnO2 nanosheets: A novel 1/2D hybrid architecture for high-capacity, reversible lithium storage,, J. Mater. Chem. A, vol. 3, no. 12, hal. 6477–6483, 2015,.

DOI: 10.1039/c5ta00266d

Google Scholar

[12] D. Wu et al., MnO2/Carbon Composites for Supercapacitor: Synthesis and Electrochemical Performance,, Front. Mater., vol. 7, no. February, hal. 1–16, 2020,.

Google Scholar

[13] J. Yu, M. Li, X. Wang, dan Z. Yang, Promising High-Performance Supercapacitor Electrode Materials from MnO2Nanosheets@Bamboo Leaf Carbon,, ACS Omega, vol. 5, no. 26, hal. 16299–16306, 2020,.

DOI: 10.1021/acsomega.0c02169

Google Scholar

[14] J. R. Choi, J. W. Lee, G. Yang, Y. J. Heo, dan S. J. Park, Activated carbon/MnO2 composites as electrode for high performance supercapacitors,, Catalysts, vol. 10, no. 2, hal. 1–10, 2020,.

DOI: 10.3390/catal10020256

Google Scholar

[15] C. Wei, P. S. Lee, dan Z. Xu, A comparison of carbon supports in MnO2/C supercapacitors,, RSC Adv., vol. 4, no. 59, hal. 31416–31423, 2014,.

DOI: 10.1039/c4ra04914d

Google Scholar

[16] H. Zhang, Z. Han, dan Q. Deng, The effect of an external magnetic field on the electrochemical capacitance of nanoporous nickel for energy storage,, Nanomaterials, vol. 9, no. 5, 2019,.

DOI: 10.3390/nano9050694

Google Scholar

[17] L. Zhang, Z. Zeng, D. W. Wang, Y. Zuo, J. Chen, dan X. Yan, Magnetic field-induced capacitance change in aqueous carbon-based supercapacitors,, Cell Reports Phys. Sci., vol. 2, no. 6, hal. 100455, 2021,.

DOI: 10.1016/j.xcrp.2021.100455

Google Scholar

[18] S. Pal, S. Majumder, S. Dutta, S. Banerjee, B. Satpati, dan S. De, Magnetic field induced electrochemical performance enhancement in reduce graphene oxide anchored Fe3O4 nanoparticle hybrid based supercapacitor,, J. Phys. D. Appl. Phys., vol. 51, no. 37, (2018).

DOI: 10.1088/1361-6463/aad5b3

Google Scholar

[19] J. Zhu et al., Magnetic field induced capacitance enhancement in graphene and magnetic graphene nanocomposites,, Energy Environ. Sci., vol. 6, no. 1, hal. 194–204, 2013,.

DOI: 10.1039/c2ee23422j

Google Scholar

[20] Z. Zheng, Y. Liu, W. Zhang, H. Chevva, dan J. Wei, Improved Supercapacitor Performance of MnO2-Electrspun Carbon Nanofiber Electrodes by mT Magnetic Field,, J. Power Sources, vol. 358, no. 1–2, hal. 22–28, 2017, doi: https://doi.org/10.1016/j.jpowsour.2017.05.008.

DOI: 10.1016/j.jpowsour.2017.05.008

Google Scholar

[21] M. C. Fite, J.-Y. Rao, dan T. Imae, Effect of External Magnetic Field on Hybrid Supercapacitors of Nitrogen-doped Graphene with Magnetic Metal Oxides,, Bull. Chem. Soc. Jpn., hal. 1–10, 2020,.

DOI: 10.1246/bcsj.20200128

Google Scholar

[22] X. You, M. Misra, S. Gregori, dan A. K. Mohanty, Preparation of an Electric Double Layer Capacitor (EDLC) Using Miscanthus-Derived Biocarbon,, ACS Sustain. Chem. Eng., vol. 6, no. 1, hal. 318–324, 2018,.

DOI: 10.1021/acssuschemeng.7b02563

Google Scholar

[23] T. H. Le, Y. Yang, L. Yu, Z. H. Huang, dan F. Kang, In-situ growth of MnO2 crystals under nanopore-constraint in carbon nanofibers and their electrochemical performance,, Sci. Rep., vol. 6, no. November, hal. 1–11, 2016,.

DOI: 10.1038/srep37368

Google Scholar

[24] W. Sun, Y. Zhang, dan F. Yang, A High-Performance Symmetric Supercapacitor from Porous Activated Carbon under Compression,, Energy Technol., vol. 9, no. 5, hal. 1–10, 2021,.

DOI: 10.1002/ente.202100068

Google Scholar

[25] K. Yang, K. Cho, D. S. Yoon, dan S. Kim, Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films,, Sci. Rep., vol. 7, no. August 2016, hal. 2–9, 2017,.

DOI: 10.1038/srep40163

Google Scholar

[26] Y. Zhang et al., New supercapacitors based on the synergetic redox effect between electrode and electrolyte,, Materials (Basel)., vol. 9, no. 9, hal. 1–13, 2016,.

Google Scholar