[1]
H. Shen et al., Facile hydrothermal synthesis of actiniaria-shaped α-MnO2/activated carbon and its electrochemical performances of supercapacitor,, J. Alloys Compd., vol. 770, hal. 926–933, 2019,.
DOI: 10.1016/j.jallcom.2018.08.228
Google Scholar
[2]
M. E. Sahin, F. ; Blaabjerg, dan A. Sangwongwanich, A Review on Supercapacitor Materials and Developments,, Turkish J. Mater., vol. 5, no. 2, hal. 10–24, 2020, [Daring]. Tersedia pada: https://www.scienceliterature.com/index.php/tjom/article/view/10-24.
Google Scholar
[3]
H. Xie, X. Liu, R. Wu, J. Liu, J. Wu, dan L. Li, High-Performance Supercapacitor with Faster Energy Storage and Long Cyclic Life Based on CuO@MnO2Nano-Core-Shell Array on Carbon Fiber Surface,, ACS Appl. Energy Mater., vol. 3, no. 8, hal. 7325–7334, 2020,.
DOI: 10.1021/acsaem.0c00590
Google Scholar
[4]
M. Z. Iqbal, M. M. Faisal, dan S. R. Ali, Integration of supercapacitors and batteries towards high-performance hybrid energy storage devices,, Int. J. Energy Res., vol. 45, no. 2, hal. 1449–1479, 2021,.
DOI: 10.1002/er.5954
Google Scholar
[5]
M. Alzaid, M. Z. Iqbal, S. Siddique, dan N. M. A. Hadia, Exploring the electrochemical performance of copper-doped cobalt-manganese phosphates for potential supercapattery applications,, RSC Adv., vol. 11, no. 45, hal. 28042–28051, 2021,.
DOI: 10.1039/d0ra09952j
Google Scholar
[6]
G. Z. Chen, Supercapacitor and supercapattery as emerging electrochemical energy stores,, Int. Mater. Rev., vol. 62, no. 4, hal. 173–202, 2017,.
Google Scholar
[7]
X. Song, Y. Zhang, dan C. Chang, Novel method for preparing activated carbons with high specific surface area from rice husk,, Ind. Eng. Chem. Res., vol. 51, no. 46, hal. 15075–15081, 2012,.
DOI: 10.1021/ie3012853
Google Scholar
[8]
M. Doloksaribu, Harsojo, K. Triyana, dan B. Prihandoko, The effect of concentration nanoparticles MnO2 DOPED in activated carbon as supercapacitor electrodes,, Int. J. Appl. Eng. Res., vol. 12, no. 19, hal. 8625–8631, (2017).
Google Scholar
[9]
D. J. Tarimo et al., Enhanced electrochemical performance of supercapattery derived from sulphur-reduced graphene oxide/cobalt oxide composite and activated carbon from peanut shells,, Int. J. Hydrogen Energy, vol. 45, no. 58, hal. 33059–33075, 2020,.
DOI: 10.1016/j.ijhydene.2020.09.142
Google Scholar
[10]
A. J. Paleo, P. Staiti, A. Brigandì, F. N. Ferreira, A. M. Rocha, dan F. Lufrano, Supercapacitors based on AC/MnO2 deposited onto dip-coated carbon nanofiber cotton fabric electrodes,, Energy Storage Mater., vol. 12, hal. 204–215, 2018,.
DOI: 10.1016/j.ensm.2017.12.013
Google Scholar
[11]
L. Pan, K. X. Wang, X. D. Zhu, X. M. Xie, dan Y. T. Liu, Hierarchical assembly of SnO2 nanowires on MnO2 nanosheets: A novel 1/2D hybrid architecture for high-capacity, reversible lithium storage,, J. Mater. Chem. A, vol. 3, no. 12, hal. 6477–6483, 2015,.
DOI: 10.1039/c5ta00266d
Google Scholar
[12]
D. Wu et al., MnO2/Carbon Composites for Supercapacitor: Synthesis and Electrochemical Performance,, Front. Mater., vol. 7, no. February, hal. 1–16, 2020,.
Google Scholar
[13]
J. Yu, M. Li, X. Wang, dan Z. Yang, Promising High-Performance Supercapacitor Electrode Materials from MnO2Nanosheets@Bamboo Leaf Carbon,, ACS Omega, vol. 5, no. 26, hal. 16299–16306, 2020,.
DOI: 10.1021/acsomega.0c02169
Google Scholar
[14]
J. R. Choi, J. W. Lee, G. Yang, Y. J. Heo, dan S. J. Park, Activated carbon/MnO2 composites as electrode for high performance supercapacitors,, Catalysts, vol. 10, no. 2, hal. 1–10, 2020,.
DOI: 10.3390/catal10020256
Google Scholar
[15]
C. Wei, P. S. Lee, dan Z. Xu, A comparison of carbon supports in MnO2/C supercapacitors,, RSC Adv., vol. 4, no. 59, hal. 31416–31423, 2014,.
DOI: 10.1039/c4ra04914d
Google Scholar
[16]
H. Zhang, Z. Han, dan Q. Deng, The effect of an external magnetic field on the electrochemical capacitance of nanoporous nickel for energy storage,, Nanomaterials, vol. 9, no. 5, 2019,.
DOI: 10.3390/nano9050694
Google Scholar
[17]
L. Zhang, Z. Zeng, D. W. Wang, Y. Zuo, J. Chen, dan X. Yan, Magnetic field-induced capacitance change in aqueous carbon-based supercapacitors,, Cell Reports Phys. Sci., vol. 2, no. 6, hal. 100455, 2021,.
DOI: 10.1016/j.xcrp.2021.100455
Google Scholar
[18]
S. Pal, S. Majumder, S. Dutta, S. Banerjee, B. Satpati, dan S. De, Magnetic field induced electrochemical performance enhancement in reduce graphene oxide anchored Fe3O4 nanoparticle hybrid based supercapacitor,, J. Phys. D. Appl. Phys., vol. 51, no. 37, (2018).
DOI: 10.1088/1361-6463/aad5b3
Google Scholar
[19]
J. Zhu et al., Magnetic field induced capacitance enhancement in graphene and magnetic graphene nanocomposites,, Energy Environ. Sci., vol. 6, no. 1, hal. 194–204, 2013,.
DOI: 10.1039/c2ee23422j
Google Scholar
[20]
Z. Zheng, Y. Liu, W. Zhang, H. Chevva, dan J. Wei, Improved Supercapacitor Performance of MnO2-Electrspun Carbon Nanofiber Electrodes by mT Magnetic Field,, J. Power Sources, vol. 358, no. 1–2, hal. 22–28, 2017, doi: https://doi.org/10.1016/j.jpowsour.2017.05.008.
DOI: 10.1016/j.jpowsour.2017.05.008
Google Scholar
[21]
M. C. Fite, J.-Y. Rao, dan T. Imae, Effect of External Magnetic Field on Hybrid Supercapacitors of Nitrogen-doped Graphene with Magnetic Metal Oxides,, Bull. Chem. Soc. Jpn., hal. 1–10, 2020,.
DOI: 10.1246/bcsj.20200128
Google Scholar
[22]
X. You, M. Misra, S. Gregori, dan A. K. Mohanty, Preparation of an Electric Double Layer Capacitor (EDLC) Using Miscanthus-Derived Biocarbon,, ACS Sustain. Chem. Eng., vol. 6, no. 1, hal. 318–324, 2018,.
DOI: 10.1021/acssuschemeng.7b02563
Google Scholar
[23]
T. H. Le, Y. Yang, L. Yu, Z. H. Huang, dan F. Kang, In-situ growth of MnO2 crystals under nanopore-constraint in carbon nanofibers and their electrochemical performance,, Sci. Rep., vol. 6, no. November, hal. 1–11, 2016,.
DOI: 10.1038/srep37368
Google Scholar
[24]
W. Sun, Y. Zhang, dan F. Yang, A High-Performance Symmetric Supercapacitor from Porous Activated Carbon under Compression,, Energy Technol., vol. 9, no. 5, hal. 1–10, 2021,.
DOI: 10.1002/ente.202100068
Google Scholar
[25]
K. Yang, K. Cho, D. S. Yoon, dan S. Kim, Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films,, Sci. Rep., vol. 7, no. August 2016, hal. 2–9, 2017,.
DOI: 10.1038/srep40163
Google Scholar
[26]
Y. Zhang et al., New supercapacitors based on the synergetic redox effect between electrode and electrolyte,, Materials (Basel)., vol. 9, no. 9, hal. 1–13, 2016,.
Google Scholar