[1]
A.J. Moulson, J.M. Herbert, Electroceramics: materials, properties, applications, John Wiley & Sons2003.
Google Scholar
[2]
M.T. Sebastian, R. Ubic, H. Jantunen, Microwave materials and applications, John Wiley & Sons2017.
Google Scholar
[3]
M. Zhou, H. Chen, X. Zhang, B. Tang, Phase composition, microstructure, and microwave dielectric properties of non-stoichiometric yttrium aluminum garnet ceramics, Journal of the European Ceramic Society, 42 (2022) 472-477.
DOI: 10.1016/j.jeurceramsoc.2021.10.040
Google Scholar
[4]
X. Zhang, X. Zhang, Z. Fang, Z. Xiong, H. Yang, S. Zhang, B. Tang, Effects of Lattice Evolution and Ordering on the Microwave Dielectric Properties of Tin-Modified Li3Mg2NbO6-Based Ceramics, The Journal of Physical Chemistry C, 124 (2020) 22069-22081.
DOI: 10.1021/acs.jpcc.0c04762
Google Scholar
[5]
M.T. Sebastian, Dielectric materials for wireless communication, Elsevier2010.
Google Scholar
[6]
F.-F. Wu, D. Zhou, C. Du, B.-B. Jin, C. Li, Z.-M. Qi, S. Sun, T. Zhou, Q. Li, X.-Q. Zhang, Design of a Sub-6 GHz Dielectric Resonator Antenna with Novel Temperature-Stabilized (Sm1–xBix)NbO4 (x = 0–0.15) Microwave Dielectric Ceramics, ACS Applied Materials & Interfaces, 14 (2022) 7030-7038.
DOI: 10.1021/acsami.1c24307
Google Scholar
[7]
H.-H. Guo, D. Zhou, W.-F. Liu, L.-X. Pang, D.-W. Wang, J.-Z. Su, Z.-M. Qi, Microwave dielectric properties of temperature-stable zircon-type (Bi, Ce)VO4 solid solution ceramics, Journal of the American Ceramic Society, 103 (2020) 423-431.
DOI: 10.1111/jace.16759
Google Scholar
[8]
J. Krupka, K. Derzakowski, M. Tobar, J. Hartnett, R.G. Geyer, Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures, Measurement Science Technology, 10 (1999) 387.
DOI: 10.1088/0957-0233/10/5/308
Google Scholar
[9]
I. Kagomiya, Y. Matsuda, K. Kakimoto, H. Ohsato, Microwave dielectric properties of YAG ceramics, Ferroelectrics, 387 (2009) 1-6.
DOI: 10.1080/00150190902966016
Google Scholar
[10]
C. Du, M.S. Fu, D. Zhou, H.H. Guo, H.T. Chen, J. Zhang, J.P. Wang, S.F. Wang, H.W. Liu, W.F. Liu, Dielectric resonator antenna with Y3Al5O12 transparent dielectric ceramics for 5G millimeter‐wave applications, Journal of the American Ceramic Society, (2021).
DOI: 10.1111/jace.17878
Google Scholar
[11]
S. Yu, W. Jing, W. Yin, M. Tang, T. Xu, B. Kang, Microwave dielectric properties of Nd:YAG transparent ceramics, Journal of Materials Science: Materials in Electronics, 27 (2016) 9767-9771.
DOI: 10.1007/s10854-016-5041-0
Google Scholar
[12]
S. Peng, C. Zhao, G. Huang, S. Wang, J. Xu, X. Li, S. Yu, Crystal structure, sintering behavior and microwave dielectric properties of CaxY3−xAl5−xTixO12 (0≤ x≤ 2.0) solid solution ceramics, Journal of Materials Science: Materials in Electronics, 29 (2018) 17047-17053.
DOI: 10.1007/s10854-018-9801-x
Google Scholar
[13]
C. Chen, W. Li, Effect of Nb2O5 and MgO/Nb2O5 doping on densification, microstructure and wear resistance of alumina, Ceramics International, 45 (2019) 18205-18209.
DOI: 10.1016/j.ceramint.2019.04.189
Google Scholar
[14]
Y.-F. Hsu, Influence of Nb2O5 additive on the densification and microstructural evolution of fine alumina powders, Materials Science and Engineering: A, 399 (2005) 232-237.
DOI: 10.1016/j.msea.2005.03.101
Google Scholar
[15]
L.B. Gomes, M.M.O. Lima, A.S. Pereira, C.P. Bergmann, Addition of niobia in alumina and its effects at its sintered microstructure, 22 CBECIMAT: Brazilian congress of engineering and materials scienceBrazil, (2016).
Google Scholar
[16]
A. Sunny, V. Viswanath, K.P. Surendran, M.T. Sebastian, The effect of Ga3+ addition on the sinterability and microwave dielectric properties of RE3Al5O12 (Tb3+, Y3+, Er3+ and Yb3+) garnet ceramics, Ceramics International, 40 (2014) 4311-4317.
DOI: 10.1016/j.ceramint.2013.08.097
Google Scholar
[17]
B.H. Toby, R.B. Von Dreele, GSAS-II: the genesis of a modern open-source all purpose crystallography software package, Journal of Applied Crystallography, 46 (2013) 544-549.
DOI: 10.1107/s0021889813003531
Google Scholar
[18]
B.W. Hakki, P.D. Coleman, A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range, IRE Transactions on Microwave Theory and Techniques, 8 (1960) 402-410.
DOI: 10.1109/tmtt.1960.1124749
Google Scholar
[19]
R. Cabral, L. Louro, M. Prado da Silva, J. Campos, E. Lima, Synthesis and characterization of Al2O3-YAG composite and Al2O3-YAG and Al2O3 with Nb2O5 additives, Cerâmica, 58 (2012) 14-19.
DOI: 10.1590/s0366-69132012000100004
Google Scholar
[20]
M. Rahaman, R. Manalert, Grain boundary mobility of BaTiO3 doped with aliovalent cations, Journal of the European Ceramic Society, 18 (1998) 1063-1071.
DOI: 10.1016/s0955-2219(97)00215-x
Google Scholar
[21]
C. Peng, Y. Chiang, Grain growth in donor-doped SrTiO3, Journal of Materials Research, 5 (1990) 1237-1245.
Google Scholar
[22]
S.H. Yoon, J.H. Lee, D.Y. Kim, N. Hwang, Effect of the Liquid‐Phase Characteristic on the Microstructures and Dielectric Properties of Donor‐(Niobium) and Acceptor‐(Magnesium) Doped Barium Titanate, Journal of the American Ceramic Society, 86 (2003) 88-92.
DOI: 10.1111/j.1151-2916.2003.tb03282.x
Google Scholar
[23]
F. Seitz, On the generation of vacancies by moving dislocations, Advances in Physics, 1 (1952) 43-90.
Google Scholar
[24]
M. Liu, J. Li, Y. Tang, J. Chen, L. Ao, A. Cao, L. Fang, Tunability of τf in garnet-structured Y3Ga5O12 microwave dielectric ceramics, Journal of the European Ceramic Society, 41 (2021) 7711-7716.
DOI: 10.1016/j.jeurceramsoc.2021.08.033
Google Scholar
[25]
R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides, Journal of Applied Physics, 73 (1993) 348-366.
DOI: 10.1063/1.353856
Google Scholar
[26]
I. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database, Acta Crystallographica Section B: Structural Science, 41 (1985) 244-247.
DOI: 10.1107/s0108768185002063
Google Scholar
[27]
D. Yu, D. Xue, Bond analyses of borates from the Inorganic Crystal Structure Database, Acta Crystallographica Section B, 62 (2006) 702-709.
DOI: 10.1107/s0108768106018520
Google Scholar
[28]
A. Glazer, The classification of tilted octahedra in perovskites, Acta Crystallographica Section B: Structural Crystallography Crystal Chemistry, 28 (1972) 3384-3392.
DOI: 10.1107/s0567740872007976
Google Scholar
[29]
R. Madhuri, S. Ganesanpotti, Crystal structure, phonon modes, and bond characteristics of AgPb2B2V3O12 (B = Mg, Zn) microwave ceramics, Journal of the American Ceramic Society, 103 (2020) 3157-3167.
DOI: 10.1111/jace.16991
Google Scholar