The Distorted Octahedral and Magnetocrystalline Anisotropy of FeMnO3 by Stoner-Wohlfarth Model

Article Preview

Abstract:

Among magnetic materials, ferrites have significant attention due to their potential application, such as magnetic recording, sensors, radar-absorbent materials, catalysts, and energy-storage devices. One of the ferrites family, FeMnO3, has been synthesized by solid-state reaction using Fe2O3 powder with an excess of 0.02% MnO2 powder in the stoichiometric composition. The structural and morphological properties have been performed using XRD and SEM at room temperature. The diffraction peaks in the pattern were indexed as FeMnO3 with a cubic (bixbite, Ia3) crystal structure. It showed no additional peaks due to impurities. The SEM image reveals the grains nucleate in a cube-like shape. Some of the particles also seem to agglomerate into larger particles. The magnetic characterization was carried out using VSM at room temperature. The magnetic hysteresis loop (M-H curves) notices the ferrimagnetic behavior. The results show remnant magnetization (Mr), coercive field (Hc), magnetic moment (µB), and anisotropy constant of FeMnO3 are 0.296 emu/g, 299 Oe, 0.046 emu/mol, and 0.1 when the external field is 70˚-80˚ from the easy axis, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1080)

Pages:

139-145

Citation:

Online since:

January 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Aziz et al., Impact of Gd and Cu substitution on dielectric and magnetic properties of MnFeO3 multiferroic materials,, Physica B Condens Matter, vol. 571, p.199–203, Oct. 2019,.

DOI: 10.1016/j.physb.2019.07.024

Google Scholar

[2] Z. Li, S. Wang, B. Li, and X. Xiang, A new method for synthesis of FeMnO3 ceramics and its phase transformation,, Journal of Nano Research, vol. 37, p.122–131, 2016,.

Google Scholar

[3] S. Rayaprol, R. A. P. Ribeiro, K. Singh, V. R. Reddy, S. D. Kaushik, and S. R. de Lazaro, Experimental and theoretical interpretation of magnetic ground state of FeMnO3,, J Alloys Compd, vol. 774, p.290–298, Feb. 2019,.

DOI: 10.1016/j.jallcom.2018.09.367

Google Scholar

[4] M. V. Nikolic et al., Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing,, Mater Sci Eng B Solid State Mater Adv Technol, vol. 257, Jul. 2020,.

DOI: 10.1016/j.mseb.2020.114547

Google Scholar

[5] C. Doroftei, P. D. Popa, E. Rezlescu, and N. Rezlescu, Structural and catalytic characterization of nanostructured iron manganite,, Compos B Eng, vol. 67, p.179–182, 2014,.

DOI: 10.1016/j.compositesb.2014.07.005

Google Scholar

[6] H. Bin et al., A high-performance anode material based on FeMnO3/graphene composite,, J Alloys Compd, vol. 695, p.1223–1230, 2017, doi: https://doi.org/10.1016/j.jallcom. 2016.10.249.

DOI: 10.1016/j.jallcom.2016.10.249

Google Scholar

[7] S. Rayaprol, S. D. Kaushik, P. D. Babu, and V. Siruguri, Structure and magnetism of FeMnO3,, in AIP Conference Proceedings, 2013, vol. 1512, p.1132–1133.

Google Scholar

[8] G. A. Prinz, Magnetic anisotropy in epitaxial metal films,, Ultramicroscopy, vol. 47, no. 4, p.346–354, 1992, doi: https://doi.org/10.1016/0304-3991(92)90164-F.

DOI: 10.1016/0304-3991(92)90164-f

Google Scholar

[9] S. F. Peterson and Y. U. Idzerda, Determination of anisotropy constants via fitting of magnetic hysteresis to numerical calculation of Stoner-Wohlfarth model,, AIP Adv, vol. 11, no. 8, Aug. 2021,.

DOI: 10.1063/5.0051454

Google Scholar

[10] S. Rayaprol, R. A. P. Ribeiro, K. Singh, V. R. Reddy, S. D. Kaushik, and S. R. de Lazaro, Experimental and theoretical interpretation of magnetic ground state of FeMnO3,, J Alloys Compd, vol. 774, p.290–298, Feb. 2019,.

DOI: 10.1016/j.jallcom.2018.09.367

Google Scholar

[11] D. Seifu et al., Evidence of ferrimagnetic ordering in FeMnO3 produced by mechanical alloying,, J Magn Magn Mater, vol. 212, no. 1–2, p.178–182, Mar. 2000,.

Google Scholar

[12] C. Doroftei, P. D. Popa, E. Rezlescu, and N. Rezlescu, Structural and catalytic characterization of nanostructured iron manganite,, Compos B Eng, vol. 67, p.179–182, Dec. 2014,.

DOI: 10.1016/j.compositesb.2014.07.005

Google Scholar

[13] M. Ghiasi and A. Malekzadeh, Structural features of (Ce, la or Sr)(Mn or Co)O3 nano-perovskites as a catalyst for carbon monoxide oxidation,, Acta Metallurgica Sinica (English Letters), vol. 27, no. 4, p.635–641, 2014,.

DOI: 10.1007/s40195-014-0060-4

Google Scholar

[14] T. Togashi, T. Naka, S. Asahina, K. Sato, S. Takami, and T. Adschiri, Surfactant-assisted one-pot synthesis of superparamagnetic magnetite nanoparticle clusters with tunable cluster size and magnetic field sensitivity,, Dalton Trans., vol. 40, no. 5, p.1073–1078, 2011,.

DOI: 10.1039/c0dt01280g

Google Scholar

[15] L. S. Lobo and A. Rubankumar, Investigation on structural and electrical properties of FeMnO 3 synthesized by sol-gel method,, Ionics (Kiel), vol. 25, no. 3, p.1341–1350, Mar. 2019,.

DOI: 10.1007/s11581-018-2776-z

Google Scholar

[16] C. Tannous and J. Gieraltowski, The Stoner–Wohlfarth model of ferromagnetism,, Eur J Phys, vol. 29, no. 3, p.475–487, 2008,.

DOI: 10.1088/0143-0807/29/3/008

Google Scholar

[17] N. S. Akulov, Über den Verlauf der Magnetisierungskurve in starken Feldern,, Zeitschrift für Physik, vol. 69, no. 11, p.822–831, 1931,.

DOI: 10.1007/bf01339465

Google Scholar

[18] E. C. Stoner and E. P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys,, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 240, no. 826, p.599–642, May 1948,.

DOI: 10.1098/rsta.1948.0007

Google Scholar

[19] H. Zhang, D. Zeng, and Z. Liu, The law of approach to saturation in ferromagnets originating from the magnetocrystalline anisotropy,, J Magn Magn Mater, vol. 322, no. 16, p.2375–2380, 2010, doi: https://doi.org/10.1016/j.jmmm.2010.02.040.

DOI: 10.1016/j.jmmm.2010.02.040

Google Scholar