[1]
Kowal, M., Pisarska, J., Kochanowicz, M., Zmojda, J., Dorosz, J., Dorosz, D., & Pisarski, W. A. (2016). Rare earth-doped barium gallo-germanate glasses for broadband near-infrared luminescence. International Conference on Transparent Optical Networks, 2016-Augus, 1–4. https://doi.org/10.1109/ICTON.2016.7550682.
DOI: 10.1109/icton.2016.7550682
Google Scholar
[2]
J. Rajagukguk et al., Structural and spectroscopic properties of Er3+ doped sodium lithium borate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 223, 117342 (2019).
DOI: 10.1016/j.saa.2019.117342
Google Scholar
[3]
Pawar, P. P., Munishwar, S. R., Gautam, S., & Gedam, R. S. (2017). Physical, thermal, structural and optical properties of Dy3+ doped lithium alumino-borate glasses for bright W-LED. Journal of Luminescence, 183, 79–88. https://doi.org/10.1016/j.jlumin.2016.11.027.
DOI: 10.1016/j.jlumin.2016.11.027
Google Scholar
[4]
J. Hutahaean et al., The Effect of Sodium Fluoride in Lithium Fluorophosphate (LFP) Glasses Doped with Nd2O3 Ion, Integrated Ferroelectrics 224 (1), 100 (2022).
DOI: 10.1080/10584587.2022.2035600
Google Scholar
[5]
Marzouk, M. A., Hamdy, Y. M., Elbatal, H. A., & Ezz Eldin, F. M. (2015). Photoluminescence and spectroscopic dependence of fluorophosphate glasses on samarium ions concentration and the induced defects by gamma irradiation. Journal of Luminescence, 166, 295–303. https://doi.org/10.1016/j.jlumin.2015.05.054.
DOI: 10.1016/j.jlumin.2015.05.054
Google Scholar
[6]
Rajagukguk, D., Rajagukguk, J., Simamora, P., Situmorang, R., Sarumaha, C., & Indrasari, W. (2021). Spectroscopic And Radiative Properties Of Sm3+ Doped Sodium-Lead-Zinc-Lithium- Borate Glasses. Jurnal SPEKTRA : Jurnal Fisika dan Aplikasinya, 6(3), 137–150.
DOI: 10.21009/spektra.063.01
Google Scholar
[7]
Rajagukguk, J., Situmorang, R., Nasution, B., Rajagukguk, D. H., Retno Susilorini, R. M. I., Sarumaha, C. S., & Kaewkhao, J. (2021). Synthesis and Structural Properties of Sm3+doped Sodium Lithium zinc Lead Borate Glasses. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1811/1/012112.
DOI: 10.1088/1742-6596/1811/1/012112
Google Scholar
[8]
Panggabean, J. H., Rajagukguk, J., Rajagukguk, D., Sarumaha, C., & Kaewkhao, J. (2022). The Effect of Calcium Fluoride in Lithium Phosphate Oxide (LPO) Doped with Sm3+ Content. Integrated Ferroelectrics, 224(1), 110–119. https://doi.org/10.1080/10584587.2022.2035601.
DOI: 10.1080/10584587.2022.2035601
Google Scholar
[9]
Rajagukguk, D. H et al., Influence of Calcium Fluoride on the Radiative Properties of Sm3+ Doped Zinc Borophosphate Glasses. Integrated Ferroelectrics.
Google Scholar
[10]
Bhatia, V., Kumar, D., Kumar, A., Mehta, V., Chopra, S., Vij, A., Rao, S. M. D., & Singh, S. P. (2019). Mixed transition and rare earth ion doped borate glass: structural, optical and thermoluminescence study. Journal of Materials Science: Materials in Electronics, 30(1), 677–686. https://doi.org/10.1007/s10854-018-0336-y.
DOI: 10.1007/s10854-018-0336-y
Google Scholar
[11]
Venkateswara Rao, B. R., Prasad, M. V. V. K. S., Kumar, L. T., & Venkateswarlu, M. (2018). Spectroscopic Investigations on Pr3+ Doped Alkali Fluoroborophosphate Glasses. Journal of Nanoscience and Technology, 04(02), 360–363. https://doi.org/10.30799/jnst.sp202.18040207.
DOI: 10.30799/jnst.sp202.18040207
Google Scholar
[12]
Shoaib, M., Rooh, G., Chanthima, N., Rajaramakrishna, R., Kim, H. J., Wongdeeying, C., & Kaewkhao, J. (2019). Intriguing energy transfer mechanism in oxide and oxy-fluoride phosphate glasses. Optical Materials, 88(November 2018), 429–444. https://doi.org/10.1016/j.optmat.2018.11.059.
DOI: 10.1016/j.optmat.2018.11.059
Google Scholar
[13]
Prabhu, N. S., Hegde, V., Wagh, A., Sayyed, M. I., Agar, O., & Kamath, S. D. (2019). Physical, structural and optical properties of Sm3+ doped lithium zinc alumino borate glasses. Journal of Non-Crystalline Solids, 515(March), 116–124. https://doi.org/10.1016/j.jnoncrysol.2019.04.015.
DOI: 10.1016/j.jnoncrysol.2019.04.015
Google Scholar
[14]
Umar, S. A., Halimah, M. K., Chan, K. T., & Latif, A. A. (2017). Polarizability, optical basicity and electric susceptibility of Er3 + doped silicate borotellurite glasses. Journal of Non-Crystalline Solids, 471(March), 101–109. https://doi.org/10.1016/j.jnoncrysol.2017.05.018.
DOI: 10.1016/j.jnoncrysol.2017.05.018
Google Scholar
[15]
M. Vijayakumar et al., Structural and optical properties of Dy3+ doped Aluminofluoroborophosphate glasses for white light applications, Optical Materials 37 (C), 695 (2014).
DOI: 10.1016/j.optmat.2014.08.015
Google Scholar
[16]
N. Saad et al., Structural and optical properties of Cr3+ embedded in a P2O5–B2O3–ZnO–BaF2–AlF3 fluoroborophosphate glasses, Materials Chemistry and Physics 212, 461 (2018).
DOI: 10.1016/j.matchemphys.2018.03.074
Google Scholar
[17]
S. Selvi et al., Effect of PbO on the B2O3–TeO2–P2O5–BaO–CdO–Sm2O3 glasses - Structural and optical investigations, Journal of Non-Crystalline Solids 461, 35 (2017).
DOI: 10.1016/j.jnoncrysol.2017.01.028
Google Scholar
[18]
Damodaraiah, S., Reddy Prasad, V., & Ratnakaram, Y. C. (2018). Structural and luminescence properties of Sm3+-doped bismuth phosphate glass for orange-red photonic applications. Luminescence, 33(3), 594–603. https://doi.org/10.1002/bio.3451.
DOI: 10.1002/bio.3451
Google Scholar
[19]
Rajagukguk, J., Sinaga, B., Sihombing, E., Djamal, M., & Kaewkhao, J. (2018). Emission cross section and optical gain of 1.06mm laser Nd3+ doped borate glasses. Materials Today: Proceedings, 5(7), 14998-15003. https://doi.org/10.1016/j.matpr.2018.04.045.
DOI: 10.1016/j.matpr.2018.04.045
Google Scholar
[20]
Rajagukguk, J., Situmorang, R., Djamal, M., Rajaramakrishna, R., Kaewkhao, J., & Minh, P. H. (2019). Structural, spectroscopic and optical gain of Nd3+ doped fluorophosphate glasses for solid state laser application. Journal of Luminescence, 216, 116738. https://doi.org/10.1016/j.jlumin.2019.116738.
DOI: 10.1016/j.jlumin.2019.116738
Google Scholar
[21]
Rajagukguk, J., Panggabean, J. H., Djamal, M., Sarumaha, C., & Kaewkhao, J. (2022). Energy transfer and broad-band luminescence of Nd3+-Er3+ co-doped Lithium Fluorophosphate (LFP) glasses. Optical Materials, 125, 112007. https://doi.org/10.1016/j.optmat.2022.112007.
DOI: 10.1016/j.optmat.2022.112007
Google Scholar
[22]
Shanmuga Sundari, S., Marimuthu, K., Sivraman, M., & Babu, S. S. (2010). Composition dependent structural and optical properties of Sm3+-doped sodium borate and sodium fluoroborate glasses. Journal of Luminescence, 130(7), 1313–1319. https://doi.org/10.1016/j.jlumin.2010.02.046.
DOI: 10.1016/j.jlumin.2010.02.046
Google Scholar
[23]
Kim, N. J., Im, S. H., Kim, D. H., Yoon, D. K., & Ryu, B. K. (2010). Structure and properties of borophosphate glasses. Electronic Materials Letters, 6(3), 103–106. https://doi.org/10.3365/eml.2010.09.103.
DOI: 10.3365/eml.2010.09.103
Google Scholar