The Effect of NaF on the Photoluminence Properties of Sammarium Ion Doped on Fluoro-Borophosphate Glass Medium

Article Preview

Abstract:

Fluoro-borophosphate glass containing Natrium Fluoride (NaF) doped with Samarium ion 1 mol% concentration. The glass compositions based on 49P2O5-5B2O3-15ZnO-15Li2O-15NaF-1Sm2O3 are prepared by melting and quenched technique. The optical and photoluminescence were obtained from the UV-Vis-NIR spectrophotometer and spectrofluorophotometer. The ground state 6H5/2 as the start transition in the absorption spectrum and the Judd-Ofelt intensity parameters (2, 4, and 6) were determined. The emission spectra of borophosphate glass with NaF were recorded at an excitation of 401 nm which gave four peaks namely 6H5/2, 6H7/2, 6H9/2, and 6H11/2..

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1080)

Pages:

165-173

Citation:

Online since:

January 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kowal, M., Pisarska, J., Kochanowicz, M., Zmojda, J., Dorosz, J., Dorosz, D., & Pisarski, W. A. (2016). Rare earth-doped barium gallo-germanate glasses for broadband near-infrared luminescence. International Conference on Transparent Optical Networks, 2016-Augus, 1–4. https://doi.org/10.1109/ICTON.2016.7550682.

DOI: 10.1109/icton.2016.7550682

Google Scholar

[2] J. Rajagukguk et al., Structural and spectroscopic properties of Er3+ doped sodium lithium borate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 223, 117342 (2019).

DOI: 10.1016/j.saa.2019.117342

Google Scholar

[3] Pawar, P. P., Munishwar, S. R., Gautam, S., & Gedam, R. S. (2017). Physical, thermal, structural and optical properties of Dy3+ doped lithium alumino-borate glasses for bright W-LED. Journal of Luminescence, 183, 79–88. https://doi.org/10.1016/j.jlumin.2016.11.027.

DOI: 10.1016/j.jlumin.2016.11.027

Google Scholar

[4] J. Hutahaean et al., The Effect of Sodium Fluoride in Lithium Fluorophosphate (LFP) Glasses Doped with Nd2O3 Ion, Integrated Ferroelectrics 224 (1), 100 (2022).

DOI: 10.1080/10584587.2022.2035600

Google Scholar

[5] Marzouk, M. A., Hamdy, Y. M., Elbatal, H. A., & Ezz Eldin, F. M. (2015). Photoluminescence and spectroscopic dependence of fluorophosphate glasses on samarium ions concentration and the induced defects by gamma irradiation. Journal of Luminescence, 166, 295–303. https://doi.org/10.1016/j.jlumin.2015.05.054.

DOI: 10.1016/j.jlumin.2015.05.054

Google Scholar

[6] Rajagukguk, D., Rajagukguk, J., Simamora, P., Situmorang, R., Sarumaha, C., & Indrasari, W. (2021). Spectroscopic And Radiative Properties Of Sm3+ Doped Sodium-Lead-Zinc-Lithium- Borate Glasses. Jurnal SPEKTRA : Jurnal Fisika dan Aplikasinya, 6(3), 137–150.

DOI: 10.21009/spektra.063.01

Google Scholar

[7] Rajagukguk, J., Situmorang, R., Nasution, B., Rajagukguk, D. H., Retno Susilorini, R. M. I., Sarumaha, C. S., & Kaewkhao, J. (2021). Synthesis and Structural Properties of Sm3+doped Sodium Lithium zinc Lead Borate Glasses. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1811/1/012112.

DOI: 10.1088/1742-6596/1811/1/012112

Google Scholar

[8] Panggabean, J. H., Rajagukguk, J., Rajagukguk, D., Sarumaha, C., & Kaewkhao, J. (2022). The Effect of Calcium Fluoride in Lithium Phosphate Oxide (LPO) Doped with Sm3+ Content. Integrated Ferroelectrics, 224(1), 110–119. https://doi.org/10.1080/10584587.2022.2035601.

DOI: 10.1080/10584587.2022.2035601

Google Scholar

[9] Rajagukguk, D. H et al., Influence of Calcium Fluoride on the Radiative Properties of Sm3+ Doped Zinc Borophosphate Glasses. Integrated Ferroelectrics.

Google Scholar

[10] Bhatia, V., Kumar, D., Kumar, A., Mehta, V., Chopra, S., Vij, A., Rao, S. M. D., & Singh, S. P. (2019). Mixed transition and rare earth ion doped borate glass: structural, optical and thermoluminescence study. Journal of Materials Science: Materials in Electronics, 30(1), 677–686. https://doi.org/10.1007/s10854-018-0336-y.

DOI: 10.1007/s10854-018-0336-y

Google Scholar

[11] Venkateswara Rao, B. R., Prasad, M. V. V. K. S., Kumar, L. T., & Venkateswarlu, M. (2018). Spectroscopic Investigations on Pr3+ Doped Alkali Fluoroborophosphate Glasses. Journal of Nanoscience and Technology, 04(02), 360–363. https://doi.org/10.30799/jnst.sp202.18040207.

DOI: 10.30799/jnst.sp202.18040207

Google Scholar

[12] Shoaib, M., Rooh, G., Chanthima, N., Rajaramakrishna, R., Kim, H. J., Wongdeeying, C., & Kaewkhao, J. (2019). Intriguing energy transfer mechanism in oxide and oxy-fluoride phosphate glasses. Optical Materials, 88(November 2018), 429–444. https://doi.org/10.1016/j.optmat.2018.11.059.

DOI: 10.1016/j.optmat.2018.11.059

Google Scholar

[13] Prabhu, N. S., Hegde, V., Wagh, A., Sayyed, M. I., Agar, O., & Kamath, S. D. (2019). Physical, structural and optical properties of Sm3+ doped lithium zinc alumino borate glasses. Journal of Non-Crystalline Solids, 515(March), 116–124. https://doi.org/10.1016/j.jnoncrysol.2019.04.015.

DOI: 10.1016/j.jnoncrysol.2019.04.015

Google Scholar

[14] Umar, S. A., Halimah, M. K., Chan, K. T., & Latif, A. A. (2017). Polarizability, optical basicity and electric susceptibility of Er3 + doped silicate borotellurite glasses. Journal of Non-Crystalline Solids, 471(March), 101–109. https://doi.org/10.1016/j.jnoncrysol.2017.05.018.

DOI: 10.1016/j.jnoncrysol.2017.05.018

Google Scholar

[15] M. Vijayakumar et al., Structural and optical properties of Dy3+ doped Aluminofluoroborophosphate glasses for white light applications, Optical Materials 37 (C), 695 (2014).

DOI: 10.1016/j.optmat.2014.08.015

Google Scholar

[16] N. Saad et al., Structural and optical properties of Cr3+ embedded in a P2O5–B2O3–ZnO–BaF2–AlF3 fluoroborophosphate glasses, Materials Chemistry and Physics 212, 461 (2018).

DOI: 10.1016/j.matchemphys.2018.03.074

Google Scholar

[17] S. Selvi et al., Effect of PbO on the B2O3–TeO2–P2O5–BaO–CdO–Sm2O3 glasses - Structural and optical investigations, Journal of Non-Crystalline Solids 461, 35 (2017).

DOI: 10.1016/j.jnoncrysol.2017.01.028

Google Scholar

[18] Damodaraiah, S., Reddy Prasad, V., & Ratnakaram, Y. C. (2018). Structural and luminescence properties of Sm3+-doped bismuth phosphate glass for orange-red photonic applications. Luminescence, 33(3), 594–603. https://doi.org/10.1002/bio.3451.

DOI: 10.1002/bio.3451

Google Scholar

[19] Rajagukguk, J., Sinaga, B., Sihombing, E., Djamal, M., & Kaewkhao, J. (2018). Emission cross section and optical gain of 1.06mm laser Nd3+ doped borate glasses. Materials Today: Proceedings, 5(7), 14998-15003. https://doi.org/10.1016/j.matpr.2018.04.045.

DOI: 10.1016/j.matpr.2018.04.045

Google Scholar

[20] Rajagukguk, J., Situmorang, R., Djamal, M., Rajaramakrishna, R., Kaewkhao, J., & Minh, P. H. (2019). Structural, spectroscopic and optical gain of Nd3+ doped fluorophosphate glasses for solid state laser application. Journal of Luminescence, 216, 116738. https://doi.org/10.1016/j.jlumin.2019.116738.

DOI: 10.1016/j.jlumin.2019.116738

Google Scholar

[21] Rajagukguk, J., Panggabean, J. H., Djamal, M., Sarumaha, C., & Kaewkhao, J. (2022). Energy transfer and broad-band luminescence of Nd3+-Er3+ co-doped Lithium Fluorophosphate (LFP) glasses. Optical Materials, 125, 112007. https://doi.org/10.1016/j.optmat.2022.112007.

DOI: 10.1016/j.optmat.2022.112007

Google Scholar

[22] Shanmuga Sundari, S., Marimuthu, K., Sivraman, M., & Babu, S. S. (2010). Composition dependent structural and optical properties of Sm3+-doped sodium borate and sodium fluoroborate glasses. Journal of Luminescence, 130(7), 1313–1319. https://doi.org/10.1016/j.jlumin.2010.02.046.

DOI: 10.1016/j.jlumin.2010.02.046

Google Scholar

[23] Kim, N. J., Im, S. H., Kim, D. H., Yoon, D. K., & Ryu, B. K. (2010). Structure and properties of borophosphate glasses. Electronic Materials Letters, 6(3), 103–106. https://doi.org/10.3365/eml.2010.09.103.

DOI: 10.3365/eml.2010.09.103

Google Scholar