Direct Production of Tin Bronzes from Copper and Cassiterite

Article Preview

Abstract:

In the Bronze Age several possibilities for tin bronze production were available, namely direct from copper and cassiterite ore or by alloying copper with metallic tin. Cassiterite ores from two sources, Cornwall and Schlaggenwald, were available. It has to be noted that cassiterite from Schlaggenwald contained about 25 wt. % WO3, presumably as wolframite. For the experiments, copper was melted at 1090 °C, covered with charcoal and then cassiterite and again charcoal was added. As is known from Sn smelting, the presence of tungsten reduces the yield of Sn. Thus, in our experiments the Sn content in the bronze was reduced. It can be confirmed by these experiments that the direct production of tin bronzes from copper and cassiterite ore is possible. In the Bronze Age the negative effect of tungsten should not have played a role, because at that time only the cassiterite deposits of Cornwall were known in Europe.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1081)

Pages:

137-142

Citation:

Online since:

March 2023

Export:

Share:

Citation:

* - Corresponding Author

[1] C. Pare, Bronze and the Bronze Age, in: Metals Make The World Go Round, C. Pare (Ed.), 2000, 1-38, Oxbow Books, Oxford.

Google Scholar

[2] B. Höppner, M. Bartelheim, M. Huijsmans, R. Krauss, K.-P. Martinek, E. Pernicka, R. Schwab, Prehistoric copper production in the Inn Valley (Austria), and the earliest copper in Central Europe, Archaeometry 47, 2, (2005), 293-315.

DOI: 10.1111/j.1475-4754.2005.00203.x

Google Scholar

[3] K.-P. Martinek, W. Sydow, Frühbronzezeitliche Kupfermetallurgie im Unterinntal (Nordtirol), Der Anschnitt, Beiheft 17 (2004) 199-211.

Google Scholar

[4] R. F. Tylecote, A History of Metallurgy, The Metals Society, Mid County Press London, 1976.

Google Scholar

[5] E. Pernicka, J. Lutz, T. Stöllner, Bronze age copper produced at Mitterberg, Austria, and its distribution, Archaeologia Austriaca, by Österreichische Akademie der Wissenschaften, Wien, 100 (2016) 19-55.

DOI: 10.1553/archaeologia100s19

Google Scholar

[6] H. Herdits, Die ostalpine bronzezeitliche Kupfererzeugung im überregionalen Vergleich am Grundbeispiel eines Hüttenplatzes in Mühlbach/Sbg., Dissertation an der Universität Wien, 2017.

Google Scholar

[7] R. Haubner, Die prähistorische Kupfermetallurgie – allgemeine Betrachtungen, BHM Berg- und Hüttenmännische Monatshefte, 166 (2021) 343-351.

DOI: 10.1007/s00501-020-01056-0

Google Scholar

[8] R. Haubner, F. Ertl, S. Strobl, Examinations of a Bronze Ingot Made of Fahlore, Practical Metallography, 54 (2017) 107-117.

DOI: 10.3139/147.110446

Google Scholar

[9] J. D. Muhly, Sources of Tin and the Beginnings of Bronze Metallurgy, American Journal of Archaeology, 89 (1985) 275-291.

DOI: 10.2307/504330

Google Scholar

[10] I. Baranyi, Betrachtungen über die Herkunft des Zinns in der Bronzezeit, carolinea, 58 (2000) 115-124.

Google Scholar

[11] H. Herdits, J. Keen, M. Steinberger, Wie kommt das Zinn in die Bronze? Ein Beitrag zur experimentellen Archäologie, Archäologie Österreichs, 6 (1995) 78-85.

Google Scholar

[12] T. Young, S. Taylor, 'Wolf rahm': archaeological evidence for the veracity of an old term, Historical Metallurgy 49 (2015) 96-109.

Google Scholar

[13] H. Louis, Metallurgy of Tin, McGraw-Hill book Company, 1911.

Google Scholar

[14] P. Wagner, Die mineralogisch-geologische Durchforschung Sachsens in ihrer geschichtlichen Entwickelung, Sitzungsberichte und Abhandlungen der Naturwissenschaftlichen Gesellschaft Isis in Dresden, (1902) 63-128.

Google Scholar

[15] Georgius Agricola, in: De Natura Fossilium, 1546.

Google Scholar

[16] E. Lassner, W.D. Schubert, The history of tungsten (Wolfram), ITIA Newsletter, June (2005), 6-11.

Google Scholar

[17] T. Rehren, The Trewhiddle Tungsten Bloom, ITIA Newsletter, June (2005), 2-5.

Google Scholar