Microstructure-Properties Characterization of Selective Laser Melted Biomedical Co-28Cr-6Mo Alloy

Article Preview

Abstract:

Co-28Cr-6Mo alloy (ASTM F75) is widely used in different biomedical applications (dental devices, orthopedic implants, etc.). Casting and metal forming are the two conventional technologies for the fabrication of this alloy. Recently, additive manufacturing has also been adopted. Due to the peculiarities of this technological process, 3D-printed alloys differ from traditionally manufactured alloys in their structure and properties. In the present work, the features of selective laser melted Co-28Cr-6Mo alloy were studied in comparison with its wrought analogue. The study included microstructural characterization (optical and electron scanning microscopy), nanoindentation, and tribological testing. It was shown that the SLM alloy featured the “fish-scale” structure, characteristic of additively fabricated alloys. This structure was composed of fine columnar dendrites. SLM Co-28Cr-6Mo was found equivalent or superior to the wrought alloy in terms of properties, such as hardness, elastic modulus and tribological behavior that makes SLM Co-28Cr-6Mo a promising candidate for implant applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1081)

Pages:

143-148

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Narushima, K. Alfirano Ueda, Co-Cr alloys as effective metallic biomaterials, In: M. Niinomi, et al. (Eds.), Advances in Metallic Biomaterials, Springer Series in Biomaterials Science and Engineering 3, Springer-Verlag, Berlin – Heidelberg, 2015, pp.157-178.

DOI: 10.1007/978-3-662-46836-4_7

Google Scholar

[2] K. Yoda, T.A. Suyalatu, N. Nomura, Y. Tsutsumi, H. Doi, S. Kurosu, A. Chiba, Y. Igarashi, T. Hanawa, Effects of chromium and nitrogen content on the microstructures and mechanical properties of as-cast Co–Cr–Mo alloys for dental applications, Acta Biomater. 8 (2012) 2856-2862.

DOI: 10.1016/j.actbio.2012.03.024

Google Scholar

[3] K. Yamanaka, M. Mori, A. Chiba, Mechanical properties of as-forged Ni-free Co–29Cr–6Mo alloys with ultrafine-grained microstructure, Mater. Sci. Eng. A 528 (2011) 5961-5966.

DOI: 10.1016/j.msea.2011.04.027

Google Scholar

[4] Y. S. Al Jabbari, T. Koutsoukis, X. Barmpagadaki, S. Zinelis, Metallurgical and interfacial characterization of PFM Co–Cr dental alloys fabricated via casting, milling or selective laser melting, Dent. Mater. 30 (2014) e79-e88.

DOI: 10.1016/j.dental.2014.01.008

Google Scholar

[5] T. Narushima, S. Mineta, K. Alfirano Ueda, π-phase and χ-phase: new precipitates in biomedical Co–Cr–Mo alloys, in: K. Sasaki (Eds.), Interface oral health science, Springer, Berlin, (2011), pp.72-80.

DOI: 10.1007/978-4-431-54070-0_12

Google Scholar

[6] M. Kikuchi, S. Wakita, R. Tanaka, β-manganese-type phase precipitated in high chromium- high nickel austenitic steels containing nitrogen, Trans. ISIJ 13 (1973) 226-228.

DOI: 10.2355/isijinternational1966.13.226

Google Scholar

[7] Y. Chen, Y. Li, S. Kurosu, K. Yamanaka, N. Tang, Y. Koizumi, A. Chiba, Effects of sigma phase and carbide on the wear behavior of CoCrMo alloys in Hanks' solution, Wear 310 (1-2) (2014) 51-62.

DOI: 10.1016/j.wear.2013.12.010

Google Scholar

[8] T. Narushima, S. Mineta, Y. Kurihara, K. Ueda, Precipitates in biomedical Co-Cr alloys, JOM 65 (2013) 489-504.

DOI: 10.1007/s11837-013-0567-6

Google Scholar

[9] K. Ueki, M. Kasamatsu, K. Ueda, Y. Koizumi, D. Wei, A. Chiba, T. Narushima, Precipitation during γ-ε phase transformation in biomedical Co-Cr-Mo alloys fabricated by electron beam melting, Metals 10 (2020) 71.

DOI: 10.3390/met10010071

Google Scholar

[10] S. Kurosu, Y.P. Li, H. Matsumoto, A. Chiba, Grain refining technique and mechanical properties of the biomedical Co-Cr-Mo alloy, Mater. Sci. Forum 654-656 (2010) 2184-2187.

DOI: 10.4028/www.scientific.net/msf.654-656.2184

Google Scholar

[11] S. Kurosu, H. Matsumoto, A. Chiba, Grain refinement of biomedical Co–27Cr–5Mo–0.16N alloy by reverse transformation, Mater. Lett. 64 (2010) 49-52.

DOI: 10.1016/j.matlet.2009.10.001

Google Scholar

[12] V. I. Zurnadzhy, V.G. Efremenko, I. Petryshynets, K. Shimizu, M.N. Brykov, I.V. Kushchenko, V.V. Kudin, Mechanical properties of carbide-free lower bainite in complex-alloyed constructional steel: Effect of bainitizing treatment parameters, Kovove Mater. 58 (2020) 129-140.

DOI: 10.4149/km_2020_2_129

Google Scholar

[13] L. Kučerová, A. Jandová, I. Zetková, Comparison of microstructure and mechanical properties of additively manufactured and conventional maraging steel, Defect Diffus. Forum 405 (2020) 133-138.

DOI: 10.4028/www.scientific.net/ddf.405.133

Google Scholar

[14] Y. Chabak, B. Efremenko, I. Petryshynets, V. Efremenko, A.G. Lekatou, V. Zurnadzhy, I. Bogomol, V. Fedun, K. Kovaľ, T. Pastukhova, Structural and tribological assessment of biomedical 316 stainless steel subjected to pulsed-plasma surface modification: comparison of LPBF 3D printing and conventional fabrication, Materials 14 (24) (2021) 7671.

DOI: 10.3390/ma14247671

Google Scholar

[15] Z. A. Duriagina, R.O. Tkachenko, A.M. Trostianchyn, I.A. Lemishka, A.M. Kovalchuk, V.V. Kulyk, T.M. Kovbasyuk, Determination of the best microstructure and titanium alloy powders properties using neural network. Journal of Achievements in Materials and Manufacturing Engineering, 87 (1) (2018) 25-31.

DOI: 10.5604/01.3001.0012.0736

Google Scholar

[16] K. Dimitriadis, A.G. Lekatou, A.K. Sfikas, Μ. Roumpi, S. Tsouli, A. Galiatsatos, S. Agathopoulos, Influence of heat-treatment cycles on the microstructure, mechanical properties, and corrosion resistance of Co-Cr dental alloys fabricated by selective laser melting, J. Mater. Eng. Perform. 30 (2021) 5252-5265.

DOI: 10.1007/s11665-021-05738-9

Google Scholar

[17] H. Choo, K.-L. Sham, J. Bohling, A. Ngo, X. Xiao, Y. Ren, P.J. Depond, M.J. Matthews, E. Garlea, Effect of laser power on defect, texture, and microstructure of a laser powder bed fusion processed 316L stainless steel, Mater. Des. 164 (2019) 107534.

DOI: 10.1016/j.matdes.2018.12.006

Google Scholar

[18] M. Ma, Z. Wang, X. Zeng, A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition, Mater. Sci. Eng., A 685 (2017) 265-273.

DOI: 10.1016/j.msea.2016.12.112

Google Scholar

[19] K.-S. Kim, J.-W. Hwang, K.-A. Lee, Effect of building direction on the mechanical anisotropy of biocompatible Co–Cr–Mo alloy manufactured by selective laser melting process, J. Alloys Compd. 834 (2020) 155055.

DOI: 10.1016/j.jallcom.2020.155055

Google Scholar

[20] M. O. Vasylyev, B.M. Mordyuk, S.M. Voloshko, V.I. Zakiyev, A.P. Burmak, D.V. Pefti, Hardening of Surface Layers of Cu–39Zn–1Pb Brass at Holding and High-Frequency Impact Deformation in Liquid Nitrogen, Metallofiz. Noveishie Tekhnol. 41 (11) 2019 1499-1517.

DOI: 10.15407/mfint.41.11.1499

Google Scholar

[21] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W, J. Biomed. Mater. Res. 24 (1990) 721-734.

DOI: 10.1002/jbm.820240607

Google Scholar

[22] Y. Chabak, V. Efremenko, M. Džupon, K. Shimizu, V. Fedun, K. Wu, B. Efremenko, I. Petryshynets, T. Pastukhova, Evaluation of the microstructure, tribological characteristics, and crack behavior of a chromium carbide coating fabricated on gray cast iron by pulsed-plasma deposition, Materials 14 (12) (2021) 3400.

DOI: 10.3390/ma14123400

Google Scholar

[23] Y. G. Chabak, V. I. Fedun, K. Shimizu, V.G. Efremenko, V.I. Zurnadzhy, Phase-structural composition of coating obtained by pulsed plasma treatment using eroded cathode of T1 high speed steel, Problems of Atomic Science and Technology 104 (4) (2016) 100-106.

DOI: 10.46813/2019-123-167

Google Scholar

[24] O. V. Sukhova, The effect of carbon content and cooling rate on the structure of boron-rich fe-B-C alloys, Physics and Chemistry of Solid State, 21 (2) (2020) 355-360.

DOI: 10.15330/pcss.21.2.355-360

Google Scholar