Effect of Rare-Earth Doping on Dynamic Magnetic Properties of FeGa Alloy

Article Preview

Abstract:

The magnetization process at elevated frequencies (up to 15 kHz) of ring-shaped binary Fe81Ga19 alloy was studied. Frequency and magnetic field dependences of coercive field and remanent induction were analyzed. Hysteresis loops and initial permeability were studied at low (200 Hz) and high (15 kHz) frequencies. The same measurements were made for FeGaRE alloys to establish the effect of rare-earth elements on dynamic magnetic properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1081)

Pages:

149-154

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Atulasimha, A. B. Flatau, A review of magnetostrictive iron-gallium alloys, Smart Mater. Struct. 20 (2011) 043001.

DOI: 10.1088/0964-1726/20/4/043001

Google Scholar

[2] A. E. Clark, J. B. Restorff, M. Wun-Fogle, T. A. Lograsso, D. L. Schlagel, Magnetostrictive Properties of Body-Centered Cubic, IEEE Trans. Magn. 36 (2000) 3238-3240.

DOI: 10.1109/20.908752

Google Scholar

[3] C. Meng, C. Jiang, Magnetostriction of a Fe83Ga17 single crystal slightly doped with Tb, Scr. Mater. 114 (2016) 9-12.

DOI: 10.1016/J.SCRIPTAMAT.2015.11.022

Google Scholar

[4] C. Meng, H. Wang, Y. Wu, J. Liu, C. Jiang, Investigating enhanced mechanical properties in dual-phase Fe-Ga-Tb alloys, Sci. Rep. 6 (2016) 1-9.

DOI: 10.1038/srep34258

Google Scholar

[5] X. Lei Wang, Y. Liu, X. Chen, H. Wei Zhang, Y. Xiang Li, Effect of Dy doping on magnetostrictive and mechanical properties of Fe83Ga17 alloy, China Foundry. 17 (2020) 198-205.

DOI: 10.1007/s41230-020-0011-9

Google Scholar

[6] Y. Yao, Y. Pan, S. Liu, Power ultrasound and its applications: A state-of-the-art review, Ultrason. Sonochem. 62 (2020) 104722.

DOI: 10.1016/j.ultsonch.2019.104722

Google Scholar

[7] R. Grossinger, N. Mehboob, D. Suess, R. S. Turtelli, M. Kriegisch, An eddy-current model describing the frequency dependence of the coercivity of polycrystalline galfenol, IEEE Trans. Magn. 48 (2012) 3076-3079.

DOI: 10.1109/TMAG.2012.2202097

Google Scholar

[8] L. Weng, W. Li, Y. Sun, W. Huang, B. Wang, High frequency characterization of Galfenol minor flux density loops, AIP Adv. 7 (2017) 1-6.

DOI: 10.1063/1.4976579

Google Scholar

[9] W. Huang, Z. Xia, P. Guo, L. Weng, Analysis and experimental research on high frequency magnetic properties of different magnetostrictive materials under variable temperature conditions, AIP Adv. 12 (2022) 035231.

DOI: 10.1063/9.0000262

Google Scholar

[10] Z. Birčáková, V. Milyutin, P. Kollár, M. Fáberová, R. Bureš, J. Füzer, Magnetic characteristics and core loss separation in magnetostrictive FeGa and FeGaRE (RE = Tb, Y) alloys, Submitted to Intermetallics (2022).

DOI: 10.1016/j.intermet.2022.107744

Google Scholar

[11] H. Wakiwaka, Maximum output of a low frequency sound source using giant magnetostrictive material, J. Alloys Compd. 258 (1997) 87-92.

DOI: 10.1016/s0925-8388(97)90497-7

Google Scholar

[12] T. Ueno, E. Summers, M. Wun-Fogle, T. Higuchi, Micro-magnetostrictive vibrator using iron-gallium alloy, Sensors Actuators, A Phys. 148 (2008) 280-284. https://doi.org/10.1016/ j.sna.2008.08.017.

DOI: 10.1016/j.sna.2008.08.017

Google Scholar

[13] J. Yao, A. V. Garshev, A. V. Knotko, V.O. Yapaskurt, A. V. Morozkin, S.K. Malik, The Tb-Fe-Ga system at 870 K as a representative of rare-earth iron gallides: Crystal structure and magnetic properties, J. Solid State Chem. 290 (2020) 121482.

DOI: 10.1016/j.jssc.2020.121482

Google Scholar

[14] S. Chikazumi, Physics of ferromagnetism, second edition, Oxford University Press Inc., New York, 1999.

Google Scholar

[15] E. Kneller, Ferromagnetismus, Springer Verlag, Berlin Göttingen Heidelberg, 1962.

Google Scholar

[16] G. Bertotti, Hysteresis in magnetism, Academic Press, San Diego, 1998.

Google Scholar