[1]
A. Karun, E. A. Siril, E. Radha, and V. A. Parthasarathy, "Somatic embryogenesis and plantlet regeneration from leaf and inflorescence explants of arecanut (Areca catechu L.)," Current Science, vol. 86, no. 12, p.1623–1628, 2004.
Google Scholar
[2]
R. B. Ashok, C. v. Srinivasa, and B. Basavaraju, "A review on the mechanical properties of areca fiber reinforced composites," Science and Technology of Materials, 2018.
DOI: 10.1016/j.stmat.2018.05.004
Google Scholar
[3]
L. Yusriah, S. M. Sapuan, E. S. Zainudin, and M. Mariatti, "Exploring the Potential of Betel Nut Husk Fiber as Reinforcement in Polymer Composites: Effect of Fiber Maturity," Procedia Chemistry, vol. 4, no. June, p.87–94, 2012.
DOI: 10.1016/j.proche.2012.06.013
Google Scholar
[4]
B. BENNEHALLI, D. SAMPATHKUMAR, R. PUNYAMURTH, and S. C. VENKATESHAPPA, "Effect of Esterification on Moisture Absorption of Single Areca Fiber," International Journal of Agriculture Sciences, vol. 4, no. 4, p.227–229, 2012.
DOI: 10.9735/0975-3710.4.4.227-229
Google Scholar
[5]
D. Sampathkumar, R. Punyamurthy, B. Bennehalli, R. P. Ranganagowda, and S. Chikkol Venkateshappa, "NATURAL ARECA FIBER: SURFACE MODIFICATION AND SPECTRAL STUDIES TYPE (METHOD/APPROACH) Spectral studies Council for Innovative Research," Journal: Journal of Advances in Chemistry, vol. 10, no. 10, p.3263–3273, [Online]. Available: www.cirjac.com
DOI: 10.1016/j.matpr.2018.10.042
Google Scholar
[6]
R. P. Swamy, G. C. M. Kumar, Y. Vrushabhendrappa, and V. Joseph, "Study of areca-reinforced phenol formaldehyde composites," Journal of Reinforced Plastics and Composites, vol. 23, no. 13, p.1373–1382, 2004.
DOI: 10.1177/0731684404037049
Google Scholar
[7]
E. Jayamani, S. Hamdan, M. R. Rahman, and M. K. bin Bakri, "Investigation of fiber surface treatment on mechanical, acoustical and thermal properties of betelnut fiber polyester composites," Procedia Engineering, vol. 97, p.545–554, 2014.
DOI: 10.1016/j.proeng.2014.12.282
Google Scholar
[8]
S. Nayak and J. R. Mohanty, "Influence of chemical treatment on tensile strength, water absorption, surface morphology, and thermal analysis of areca sheath fibers," Journal of Natural Fibers, vol. 16, no. 4, p.589–599, 2019.
DOI: 10.1080/15440478.2018.1430650
Google Scholar
[9]
S. Dhanalakshmi, P. Ramadevi, and B. Basavaraju, "Areca fiber reinforced epoxy composites: Effect of chemical treatments on impact strength," Oriental Journal of Chemistry, vol. 31, no. 2, p.763–769, 2015.
DOI: 10.13005/ojc/310218
Google Scholar
[10]
K. S. Reddy and D. Sreedhar, "Thermal Conductivity of Natural Fiber, Glass Fiber & CNTs Reinforced Epoxy Composites," International Journal of Current Engineering and Technology, vol. 6, no. 4, p.1196–1198, 2011.
DOI: 10.14741/ijcet/22774106/6.4.2016.18
Google Scholar
[11]
J. S. Binoj, R. E. Raj, B. S. S. Daniel, and S. S. Saravanakumar, "Optimization of short Indian Areca fruit husk fiber (Areca catechu L.)–reinforced polymer composites for maximizing mechanical properties," International Journal of Polymer Analysis and Characterization, vol. 21, no. 2, p.112–122, 2016.
DOI: 10.1080/1023666X.2016.1110765
Google Scholar
[12]
G. Chethan, K. C. Sunil, S. Achari, and Y. Narayana, "Determination of thermal conductivity of Areca husk fiber by Lee' s disc ethod," p.2–6, [Online]. Available: https://worldresearchersassociations.com/RJCESpecial(I)2020/4.pdf
Google Scholar
[13]
M. Sood and G. Dwivedi, "Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review," Egyptian Journal of Petroleum, vol. 27, no. 4, p.775–783, 2018.
DOI: 10.1016/j.ejpe.2017.11.005
Google Scholar