[1]
S.Ijima, Helical microtubules of graphitic carbon, Nature, vol. 354, no. 6348, pp.56-58, 1991.
DOI: 10.1038/354056a0
Google Scholar
[2]
Jie Dong, Signaling Pathways Implicated in Carbon Nanotube-Induced Lung Inflammation, Front Immunol. 2020 Dec 11;11:552613.
DOI: 10.3389/fimmu.2020.552613
Google Scholar
[3]
Raphey VR, Henna TK, Nivitha KP, Mufeedha P, Sabu C, Pramod K. Advanced biomedical applications of carbon nanotube. Mater Sci Eng C Mater Biol Appl. 2019 Jul;100:616-630.
DOI: 10.1016/j.msec.2019.03.043
Google Scholar
[4]
Ferrier DC, Honeychurch KC. Carbon Nanotube (CNT)-Based Biosensors. Biosensors (Basel). 2021 Nov 29;11(12):486.
DOI: 10.3390/bios11120486
Google Scholar
[5]
Hirotani J, Ohno Y. Carbon Nanotube Thin Films for High-Performance Flexible Electronics Applications. Top Curr Chem (Cham). 2019 Jan 2;377(1):3.
DOI: 10.1007/s41061-018-0227-y
Google Scholar
[6]
Cao Y, Zhou T, Wu K, Yong Z, Zhang Y. Aligned carbon nanotube fibers for fiber-shaped solar cells, supercapacitors and batteries. RSC Adv. 2021 Feb 9;11(12):6628-6643.
DOI: 10.1039/d0ra09482j
Google Scholar
[7]
Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F, Kim J, Shin KH, Seok Park H, Zhang W, Guo Z, Wang H, Tang Y, Gorgolis G, Galiotis C, Ma J. 2020 Roadmap on Carbon Materials for Energy Storage and Conversion. Chem Asian J. 2020 Apr 1;15(7):995-1013.
DOI: 10.1002/asia.201901802
Google Scholar
[8]
Patel DK, Kim HB, Dutta SD, Ganguly K, Lim KT. Carbon Nanotubes-Based Nanomaterials and Their Agricultural and Biotechnological Applications. Materials (Basel). 2020 Apr 3;13(7):1679.
DOI: 10.3390/ma13071679
Google Scholar
[9]
Manawi YM; Ihsanullah, Samara A, Al-Ansari T, Atieh MA. A Review of Carbon Nanomaterials' Synthesis via the Chemical Vapor Deposition (CVD) Method. Materials (Basel). 2018 May 17;11(5):822.
DOI: 10.3390/ma11050822
Google Scholar
[10]
N. Yahya, Carbon and Oxide Nanostructures: Synthesis, Characterization and Applications, Springer Science & Business Media, Berlin Germany, 2011.
Google Scholar
[11]
MacKenzie KJ, Dunens OM, See CH, Harris AT. Large-scale carbon nanotube synthesis. Recent Pat Nanotechnol. 2008;2(1):25-40.
DOI: 10.2174/187221008783478617
Google Scholar
[12]
Oyewemi, A., Abdulkareem, A.S., Tijani, J.O. et al. Controlled Syntheses of Multi-walled Carbon Nanotubes from Bimetallic Fe–Co Catalyst Supported on Kaolin by Chemical Vapour Deposition Method. Arab J Sci Eng 44, 5411–5432 (2019).
DOI: 10.1007/s13369-018-03696-4
Google Scholar
[13]
Ratković Sanja, Kiss Erne, Bošković Goran, Chemical Industry & Chemical Engineering Quarterly. 15 (4), 263−270 (2009).
Google Scholar
[14]
Kathyayini, H., Reddy, K Vijayakumar., Nagy, J B., Nagaraju, N, Synthesis of carbon nanotubes over transition metal ions supported on Al(OH)3, Indian Journal of Chemistry, Vol.47A, pp.663-668, (2008).
Google Scholar
[15]
N. Chiwaye, L.L. Jewell, D.G. Billing, D. Naidoo, M. Ncube, N.J. Coville, In situ powder XRD and Mössbauer study of Fe–Co supported on CaCO3, Materials Research Bulletin, Vol. 56, 2014, pp.98-106.
DOI: 10.1016/j.materresbull.2014.04.065
Google Scholar
[16]
Aliyu A, Abdulkareem AS, Kovo AS, Abubakre OK, Tijani JO, and Kariim I, Synthesize multi-walled carbon nanotubes via catalytic chemical vapour deposition method on Fe-Ni bimetallic catalyst supported on kaolin, Carbon Letters Vol. 21, 33-50 (2017).
DOI: 10.5714/cl.2017.21.033
Google Scholar
[17]
Jingbo Jia, Andrei Veksha, Teik-Thye Lim, Grzegorz Lisak, Temperature-dependent synthesis of multi-walled carbon nanotubes and hydrogen from plastic waste over A-site-deficient perovskite La0.8Ni1-xCoxO3-δ, Chemosphere. 291 (2022) 132831.
DOI: 10.1016/j.chemosphere.2021.132831
Google Scholar
[18]
Iwona Pełech, Urszula Narkiewicz, Agnieszka Kaczmarek, Anna Jędrzejewska, Preparation and characterization of multi-walled carbon nanotubes grown on transition metal catalysts, Pol. J. Chem. Tech., Vol. 16, No. 1, 2014.
DOI: 10.2478/pjct-2014-0020
Google Scholar
[19]
Zoltán Kónya, István Vesselényi, Károly Lázár, János Kiss and Imre Kiricsi, Comparison of Fe/Al2O3 and Fe,Co/Al2O3 catalysts used for production of carbon nanotubes from acetylene by CCVD, Proceedings of SPIE Vol. 5118 (2003).
DOI: 10.1117/12.501324
Google Scholar
[20]
S.A. Shokry et al., Study of the productivity of MWCNT over Fe and Fe–Co catalysts supported on SiO2, Al2O3 and MgO, Egypt. J. Petrol. (2014).
DOI: 10.1016/j.ejpe.2014.05.005
Google Scholar
[21]
Stefano Mazzanti, Giovanni Manfredi, Alex J. Barker, Markus Antonietti, Aleksandr Savateev, and Paolo Giusto, Carbon Nitride Thin Films as All-In-One Technology for Photocatalysis, ACS Catal. 2021, 11, 17, 11109–11116.
DOI: 10.1021/acscatal.1c02909
Google Scholar
[22]
Daisuke Takagi, Yoshikazu Homma, Hiroki Hibino, Satoru Suzuki, and Yoshihiro Kobayashi, Single-Walled Carbon Nanotube Growth from Highly Activated Metal Nanoparticles, Nano Lett., Vol. 6, No. 12, 2642-2645, (2006).
DOI: 10.1021/nl061797g
Google Scholar
[23]
Sreekar Bhaviripudi, Ervin Mile, Stephen A. Steiner III, Aurea T. Zare, Mildred S. Dresselhaus, Angela M. Belcher, and Jing Kong, CVD Synthesis of Single-Walled Carbon Nanotubes from Gold Nanoparticle Catalysts, J. AM. CHEM. SOC. (2007), 129, 1516-1517.
DOI: 10.1021/ja0673332
Google Scholar