Influence of Reaction Temperature on Yields of Multi-Walled CNTs Synthesized with Fe-Co/Al2O3 Bimetallic Nanocatalyst

Article Preview

Abstract:

Aluminum-supported iron and cobalt (Fe-Co/Al2O3) bimetallic nano-sized catalyst has been synthesized by the sol-gel method. The average diameter of the Fe-Co/Al23 catalyst was measured to be around 7 nm from SEM images. EDX measurements revealed that Fe-Co/Al23 consists of 59.98% of Al, 20.00% of Fe, and 20.02% of Co by atomic weight. Multi-walled carbon nanotubes (MWCNT) were prepared with as-synthesized nanocatalyst from a commercial butane gas by the CCVD method at different reaction temperatures. TEM and XRD measurements revealed that Fe-Co/Al2O3 bimetallic nano-sized catalyst is beneficial to fabricating MWCNTs by the CCVD method. The highest yield of MWCNTs was obtained at 690°C.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1083)

Pages:

89-95

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.Ijima, Helical microtubules of graphitic carbon, Nature, vol. 354, no. 6348, pp.56-58, 1991.

DOI: 10.1038/354056a0

Google Scholar

[2] Jie Dong, Signaling Pathways Implicated in Carbon Nanotube-Induced Lung Inflammation, Front Immunol. 2020 Dec 11;11:552613.

DOI: 10.3389/fimmu.2020.552613

Google Scholar

[3] Raphey VR, Henna TK, Nivitha KP, Mufeedha P, Sabu C, Pramod K. Advanced biomedical applications of carbon nanotube. Mater Sci Eng C Mater Biol Appl. 2019 Jul;100:616-630.

DOI: 10.1016/j.msec.2019.03.043

Google Scholar

[4] Ferrier DC, Honeychurch KC. Carbon Nanotube (CNT)-Based Biosensors. Biosensors (Basel). 2021 Nov 29;11(12):486.

DOI: 10.3390/bios11120486

Google Scholar

[5] Hirotani J, Ohno Y. Carbon Nanotube Thin Films for High-Performance Flexible Electronics Applications. Top Curr Chem (Cham). 2019 Jan 2;377(1):3.

DOI: 10.1007/s41061-018-0227-y

Google Scholar

[6] Cao Y, Zhou T, Wu K, Yong Z, Zhang Y. Aligned carbon nanotube fibers for fiber-shaped solar cells, supercapacitors and batteries. RSC Adv. 2021 Feb 9;11(12):6628-6643.

DOI: 10.1039/d0ra09482j

Google Scholar

[7] Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F, Kim J, Shin KH, Seok Park H, Zhang W, Guo Z, Wang H, Tang Y, Gorgolis G, Galiotis C, Ma J. 2020 Roadmap on Carbon Materials for Energy Storage and Conversion. Chem Asian J. 2020 Apr 1;15(7):995-1013.

DOI: 10.1002/asia.201901802

Google Scholar

[8] Patel DK, Kim HB, Dutta SD, Ganguly K, Lim KT. Carbon Nanotubes-Based Nanomaterials and Their Agricultural and Biotechnological Applications. Materials (Basel). 2020 Apr 3;13(7):1679.

DOI: 10.3390/ma13071679

Google Scholar

[9] Manawi YM; Ihsanullah, Samara A, Al-Ansari T, Atieh MA. A Review of Carbon Nanomaterials' Synthesis via the Chemical Vapor Deposition (CVD) Method. Materials (Basel). 2018 May 17;11(5):822.

DOI: 10.3390/ma11050822

Google Scholar

[10] N. Yahya, Carbon and Oxide Nanostructures: Synthesis, Characterization and Applications, Springer Science & Business Media, Berlin Germany, 2011.

Google Scholar

[11] MacKenzie KJ, Dunens OM, See CH, Harris AT. Large-scale carbon nanotube synthesis. Recent Pat Nanotechnol. 2008;2(1):25-40.

DOI: 10.2174/187221008783478617

Google Scholar

[12] Oyewemi, A., Abdulkareem, A.S., Tijani, J.O. et al. Controlled Syntheses of Multi-walled Carbon Nanotubes from Bimetallic Fe–Co Catalyst Supported on Kaolin by Chemical Vapour Deposition Method. Arab J Sci Eng 44, 5411–5432 (2019).

DOI: 10.1007/s13369-018-03696-4

Google Scholar

[13] Ratković Sanja, Kiss Erne, Bošković Goran, Chemical Industry & Chemical Engineering Quarterly. 15 (4), 263−270 (2009).

Google Scholar

[14] Kathyayini, H., Reddy, K Vijayakumar., Nagy, J B., Nagaraju, N, Synthesis of carbon nanotubes over transition metal ions supported on Al(OH)3, Indian Journal of Chemistry, Vol.47A, pp.663-668, (2008).

Google Scholar

[15] N. Chiwaye, L.L. Jewell, D.G. Billing, D. Naidoo, M. Ncube, N.J. Coville, In situ powder XRD and Mössbauer study of Fe–Co supported on CaCO3, Materials Research Bulletin, Vol. 56, 2014, pp.98-106.

DOI: 10.1016/j.materresbull.2014.04.065

Google Scholar

[16] Aliyu A, Abdulkareem AS, Kovo AS, Abubakre OK, Tijani JO, and Kariim I, Synthesize multi-walled carbon nanotubes via catalytic chemical vapour deposition method on Fe-Ni bimetallic catalyst supported on kaolin, Carbon Letters Vol. 21, 33-50 (2017).

DOI: 10.5714/cl.2017.21.033

Google Scholar

[17] Jingbo Jia, Andrei Veksha, Teik-Thye Lim, Grzegorz Lisak, Temperature-dependent synthesis of multi-walled carbon nanotubes and hydrogen from plastic waste over A-site-deficient perovskite La0.8Ni1-xCoxO3-δ, Chemosphere. 291 (2022) 132831.

DOI: 10.1016/j.chemosphere.2021.132831

Google Scholar

[18] Iwona Pełech, Urszula Narkiewicz, Agnieszka Kaczmarek, Anna Jędrzejewska, Preparation and characterization of multi-walled carbon nanotubes grown on transition metal catalysts, Pol. J. Chem. Tech., Vol. 16, No. 1, 2014.

DOI: 10.2478/pjct-2014-0020

Google Scholar

[19] Zoltán Kónya, István Vesselényi, Károly Lázár, János Kiss and Imre Kiricsi, Comparison of Fe/Al2O3 and Fe,Co/Al2O3 catalysts used for production of carbon nanotubes from acetylene by CCVD, Proceedings of SPIE Vol. 5118 (2003).

DOI: 10.1117/12.501324

Google Scholar

[20] S.A. Shokry et al., Study of the productivity of MWCNT over Fe and Fe–Co catalysts supported on SiO2, Al2O3 and MgO, Egypt. J. Petrol. (2014).

DOI: 10.1016/j.ejpe.2014.05.005

Google Scholar

[21] Stefano Mazzanti, Giovanni Manfredi, Alex J. Barker, Markus Antonietti, Aleksandr Savateev, and Paolo Giusto, Carbon Nitride Thin Films as All-In-One Technology for Photocatalysis, ACS Catal. 2021, 11, 17, 11109–11116.

DOI: 10.1021/acscatal.1c02909

Google Scholar

[22] Daisuke Takagi, Yoshikazu Homma, Hiroki Hibino, Satoru Suzuki, and Yoshihiro Kobayashi, Single-Walled Carbon Nanotube Growth from Highly Activated Metal Nanoparticles, Nano Lett., Vol. 6, No. 12, 2642-2645, (2006).

DOI: 10.1021/nl061797g

Google Scholar

[23] Sreekar Bhaviripudi, Ervin Mile, Stephen A. Steiner III, Aurea T. Zare, Mildred S. Dresselhaus, Angela M. Belcher, and Jing Kong, CVD Synthesis of Single-Walled Carbon Nanotubes from Gold Nanoparticle Catalysts, J. AM. CHEM. SOC. (2007), 129, 1516-1517.

DOI: 10.1021/ja0673332

Google Scholar