Nanopowders Created by Irradiating Brass with Relativistic Electrons

Article Preview

Abstract:

The paper deals with changes in the stoichiometry of nanopowders obtained under staged irradiation of a brass ingot placed in a graphite crucible. Composite core-shell CuO/ZnO nanoparticles, copper nanoparticles, and copper and zinc oxides were obtained. The use of a relativistic electron accelerator is necessary to produce nanopowders on an industrial scale. Transmission electron microscopy and energy-dispersive analysis of the obtained nanoparticles were carried out. Thermodynamic calculation of the temperature dependence of the equilibrium content of copper and zinc is presented for the condensed and gas phases. The formation mechanism of CuO/ZnO composite nanoparticles is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1083)

Pages:

61-69

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Sabbouh, A. Nikitina, E. Rogacheva, L. Kraeva, S. Ulasevich, E. Skorb and M. Nosonovsky, Separation of motions and vibrational separation of fractions for biocide brass, Ultrasonics Sonochemistry 80 (2021) 105817.

DOI: 10.1016/j.ultsonch.2021.105817

Google Scholar

[2] A.S. Lozhkomoev, O.V. Bakina, A.V. Pervikov, S.O. Kazantsev and E.A. Glazkova, Synthesis of CuO–ZnO composite nanoparticles by electrical explosion of wires and their antibacterial activities, Journal of Materials Science, Materials in Electronics, 30 № 14. (2019) 13209–13216.

DOI: 10.1007/s10854-019-01684-4

Google Scholar

[3] P. V. Kazakevich, V. V. Voronov, A. V. Simakin and G. A. Shafeev, Formation of copper and brass nanoparticles during laser ablation in a liquid, Quantum Electron., 34:10 (2004) 951–956.

DOI: 10.1070/qe2004v034n10abeh002756

Google Scholar

[4] S.P. Bardakhanov, A.I. Korchagin, N.K. Kuksanov, A.V. Lavrukhin, R.A. Salimov, S.N. Fadeev and V.V. Cherepkov, Obtaining nanopowders by evaporation of initial substances in an electron accelerator at atmospheric pressure, Reports of the Academy of Sciences 409, №3 (2006) 320–323.

DOI: 10.1134/s1028335806070044

Google Scholar

[5] N.V. Yumozhapova, A.V. Nomoev, V.V. Syzrantsev and E.Ch. Khartaeva, Formation of metal/semiconductor Cu-Si composite nanostructures, Beilstein Journal of Nanotechnology, 10 (2019) 2497–2504.

DOI: 10.3762/bjnano.10.240

Google Scholar

[6] A.V. Nomoev, S.P. Bardakhanov, M. Schreiber, D.Z. Bazarova, B.B. Baldanov and N.A. Romanov, Synthesis, characterization, and mechanism of formation of janus-like nanoparticles of tantalum silicide-silicon (TaSi2/Si), Nanomaterials. 5. № 1 (2015) 26-35.

DOI: 10.3390/nano5010026

Google Scholar

[7] A.V. Nomoev, N.T. Torhov, E.Ch. Khartaeva, V.V. Syzranthev, N.V. Yumozhapova, M.A. Tsyrenova and V.N. Mankhirov, Special aspects of the thermodynamics of formation and polarization of Ag/Si nanoparticles, Chemical Physics Letters, 720 (2019) 113-118.

DOI: 10.1016/j.cplett.2019.02.015

Google Scholar

[8] A.V. Nomoev, E.Ch. Khartaeva, N.V. Yumozhapova, T.G. Darmaev, S.P. Bardakhanov, V.V. Syzranthev, K.V. Zobov, and Y.Y. Gafner, Receiving copper nanoparticles: experiment and modelling, Solid State Phenomena, 288 (2019) 140–147.

DOI: 10.4028/www.scientific.net/ssp.288.140

Google Scholar

[9] State Standard 15527-2004. Pressure treated copper zinc alloys (brasses). Grades. Moscow, Standartinform Publ., 2005 (In Russian).

Google Scholar

[10] O.A. Bannykh, P.B. Budberg, S.P. Alisova et al. State diagrams of binary and multicomponent systems based on iron. Metallurgy, (1986)

Google Scholar

[11] S.V. Shukhardina, Binary and multicomponent systems based on copper. Science, 1979.

Google Scholar

[12] N.P. Lyakisheva, Phase diagrams of binary metallic systems, Mechanical engineering, 1996-2000.

Google Scholar

[13] https://doncarb.com/articles/grafitovyy-tigel/

Google Scholar

[14] A.P. Zavjalov, K.V. Zobov, V.V. Syzrantsev and S.P. Bardakhanov, Full surface concept in the preparation and application of silicon dioxide nanopowder, Vestn. NSU Series: Physics, 9:4 (2014) 80–88.

DOI: 10.54362/1818-7919-2014-9-4-80-88

Google Scholar

[15] K. Ellmer, D.S. Ginley, H. Hosono and D.C. Paine, Transparent Conductive Zinc Oxide and Its Derivatives, in: Handbook of transparent conductors, Springer (2010) 193-263.

DOI: 10.1007/978-1-4419-1638-9_7

Google Scholar

[16] T. Yamashita, R. Hansson and P.C. Hayes, The relationships between microstructure and crystal structure in zincite solid solutions, J. Mater. Sci. 41 (2006) 5559-5568.

DOI: 10.1007/s10853-006-0343-x

Google Scholar

[17] G. Lee, T. Kawazoe and M. Ohtsu, Room Temperature Near-Field Photoluminescence of Zinc-Blend and Wurtzite ZnO Structures, Applied surface science 239, 3 (2005) 394-397.

DOI: 10.1016/j.apsusc.2004.06.004

Google Scholar

[18] N.A. Vatolin, G.K. Moiseev and B.G. Trusov, Thermodynamic modeling in high-temperature inorganic systems, Metallurgy (1994) 352.

Google Scholar

[19] B.G. Trusov, Software package TERRA for the calculation of plasma-chemical processes, Materials of the III Intern. symp. on theoretical and applied plasma chemistry, Ples, (2002) 217-218.

Google Scholar