Preparation and Characterization of Silver Nanoparticles by Pulsed Laser Ablation and Investigation of their Effect on Bacteria

Article Preview

Abstract:

Synthesis of silver nanoparticles (AgNP) by pulsed liquid laser ablation (PLAL) produces AgNPs that are better suited for biological applications compared to those prepared by standard wet-chemical methods. These were mainly achieved by water ablation with pulse widths in the nanosecond range. In the case of surface NP activation, we previously detected a strong surface-enhanced Raman scattering (SERS) signal from such AgNPs. To do this, we dilute Colloid slightly with LiCl. These surface alterations may have an effect on the NPs' capability to combat bacteria. every time, AgNPs with a median diameter of under ten nm were created., that has been incontestible in alternative studies to be the optimum size for germicidal activity.. Furthermore, minimum restrictive concentration (MIC) values for LiCl-modified AgNPs fell inside a slender vary of 1.1-3.8 g/mL, creating them the foremost efficient. This result's believed to be explained by the metal surface's enhanced surface reactivity, which is brought on by the existence of charged active sites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1083)

Pages:

33-38

Citation:

Online since:

April 2023

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Alkaabi, Zaid K. Synthesis and Characterization of ZnO Nanoparticles via Aloe Vera Extract. In: Materials Science Forum. Trans Tech Publications Ltd, 2021. pp.211-214.‏

DOI: 10.4028/www.scientific.net/msf.1039.211

Google Scholar

[2] Tomaa, G. A., Alkaabi, Z. K., & Mohammed, M. S. (2022). Synthesis and Characterization of Copper Oxide Nanoparticles for Perovskite Solar Cell Applications. NeuroQuantology, 20(4), 382-388.‏

DOI: 10.14704/nq.2022.20.4.nq22134

Google Scholar

[3] Alkaabi, Z. K., & Al-Shakarchi, E. K. (2021). Studying the Physical Properties of Bi-2223 Nanostructure Prepared Thermal Treatment Method. In Materials Science Forum (Vol. 1039, pp.269-273). Trans Tech Publications Ltd.‏

DOI: 10.4028/www.scientific.net/msf.1039.269

Google Scholar

[4] Bellissima, F., Bonini, M., Giorgi, R., Baglioni, P., Barresi, G., Mastromei, G., & Perito, B. (2014). Antibacterial activity of silver nanoparticles grafted on stone surface. Environmental Science and Pollution Research, 21(23), 13278-13286.‏

DOI: 10.1007/s11356-013-2215-7

Google Scholar

[5] Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.‏

DOI: 10.1088/0957-4484/16/10/059

Google Scholar

[6] Kim J S, Kuk E, Yu K N, Kim J-H, Park S J, Lee H J, Kim S H, Park Y K, Park Y H, Hwang C-Y, et al. Nanomedicine: NBM. 2007;3:95–101.

DOI: 10.1016/j.nano.2006.12.001

Google Scholar

[7] Xiu, Z. M., Zhang, Q. B., Puppala, H. L., Colvin, V. L., & Alvarez, P. J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano letters, 12(8), 4271-4275.‏

DOI: 10.1021/nl301934w

Google Scholar

[8] Ivask, A., Elbadawy, A., Kaweeteerawat, C., Boren, D., Fischer, H., Ji, Z., ... & Godwin, H. A. (2014). Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano 8: 374–386. Link: https://bit. ly/3COLsen.‏ [9] Feng Q L, Wu J, Chen G Q, Cui F Z, Kim T N, Kim J O. J Biomed Mater Res. 2000;52:662–668. doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3.

DOI: 10.1021/nn4044047

Google Scholar

[9] Grade, S., Eberhard, J., Wagener, P., Winkel, A., Sajti, C. L., Barcikowski, S., & Stiesch, M. (2012). Therapeutic Window of Ligand‐Free Silver Nanoparticles in Agar‐Embedded and Colloidal State: In Vitro Bactericidal Effects and Cytotoxicity. Advanced Engineering Materials, 14(5), B231-B239.‏

DOI: 10.1002/adem.201180016

Google Scholar

[10] Ivask, A., ElBadawy, A., Kaweeteerawat, C., Boren, D., Fischer, H., Ji, Z., ... & Godwin, H. A. (2014). Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS nano, 8(1), 374-386.‏

DOI: 10.1021/nn4044047

Google Scholar

[11] Marambio-Jones, C., & Hoek, E. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of nanoparticle research, 12(5), 1531-1551.‏

DOI: 10.1007/s11051-010-9900-y

Google Scholar

[12] Silver, S. (2003). Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS microbiology reviews, 27(2-3), 341-353.‏

DOI: 10.1016/s0168-6445(03)00047-0

Google Scholar

[13] Pandey, J. K., Swarnkar, R. K., Soumya, K. K., Dwivedi, P., Singh, M. K., Sundaram, S., & Gopal, R. (2014). Silver nanoparticles synthesized by pulsed laser ablation: as a potent antibacterial agent for human enteropathogenic gram-positive and gram-negative bacterial strains. Applied biochemistry and biotechnology, 174(3), 1021-1031.‏.

DOI: 10.1007/s12010-014-0934-y

Google Scholar

[14] Sintubin, L., Verstraete, W., & Boon, N. (2012). Biologically produced nanosilver: current state and future perspectives. Biotechnology and Bioengineering, 109(10), 2422-2436.‏.

DOI: 10.1002/bit.24570

Google Scholar

[15] Muniz‐Miranda, M. (2013). SERS investigation on the adsorption and photoreaction of 4‐nitroanisole in Ag hydrosols. Journal of Raman Spectroscopy, 44(10), 1416-1421.‏

DOI: 10.1002/jrs.4236

Google Scholar