An Analysis of the Solute Interactions in Multicomponent Metallic Solution to Study the Liquid Metal Corrosion Mechanisms in Sodium

Article Preview

Abstract:

It is demonstrated that using the mathematical formalism of the interaction parameters for multicomponent metallic solution, it is possible to predict mass transfer in a system consisting of two dissimilar metals separated by low-melting one containing non-metallic impurities. The calculation of the interaction parameters in three-and four-component systems was carried out using the equations of the coordination-cluster model. Comparison between theory and data reported in the literature for corrosion in sodium loop led to the conclusion about the most probable mechanism of the influence of the oxygen impurity content on the corrosion rate of iron under non-isothermal conditions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1083)

Pages:

217-224

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Lorenzin, A. Abanades, A Review on the Application of Liquid Metals as Heat Transfer Fluid in Concentrated Solar Power Technologies, International journal of hydrogen energy. 222 (2016) 6990.

DOI: 10.1016/j.ijhydene.2016.01.030

Google Scholar

[2] J. Pacio, A. Fritsch, C. Singer, R. Uhlig, Liquid Metals as Efficient Coolants for High-Intensity Point-Focus Receivers: Implications to the Design and Performance of Next-Generation CSP Systems, Energy Procedia. 49 (2014) 647.

DOI: 10.1016/j.egypro.2014.03.070

Google Scholar

[3] K. Niedermeier, H.J. Flesch, L. Marocco, Th. Wetzel, Assessment of Thermal Energy in a Sodium-based CSP Plant Applied Thermal Engineering. 107 (2016) 386.

DOI: 10.1016/j.applthermaleng.2016.06.152

Google Scholar

[4] N.N. Oshkanov, O.M. Saraev, M.V. Bakanov, P.P. Govorov, 30 Years of Experience in g the BN-600 Sodium-Cooled Fast Reactor Atomic Energy. 108 (2010) 234.

DOI: 10.1007/s10512-010-9283-2

Google Scholar

[5] D. Gorse-Pomonti, V. Russier, Liquid Metals for Nuclear Applications, Journal of Non. 353 (2007) 3600.

DOI: 10.1016/j.jnoncrysol.2007.05.175

Google Scholar

[6] H.U. Borgstedt, C. Guminski, Solubilities and Solution Chemistry in Liquid Alkali Metals Monatshefte fuer Chemie, Chemical Monthly. 131 (2000) 917.

DOI: 10.1007/s007060070046

Google Scholar

[7] M.-L. Saboungi, D. Caveny, I. Bloom, M. Blander, The Coordination Cluster Theory: Multicomponent Systems Metallurgical Transactions. 18A (1987) 1779.

DOI: 10.1007/bf02646209

Google Scholar

[8] V.V. Semenov, I.E. Lyublinski, V.P. Krasin, A.V. Vertkov, S.I. Soyustova, A.E. Potapova, Corrosion Resistance of V-4Ti-4Cr Alloy in Convection Flow of Eutectic Na-K Alloy, Inorganic Materials: Applied Research. 6 (2015) 133.

DOI: 10.1134/s2075113315020148

Google Scholar

[9] V.I. Nikitin, Physicochemical Phenomena in the Action of Liquid Metals on Solid (Moscow: Atomizdat Press), 1967, p.441.

Google Scholar

[10] V.P. Krasin, S.I. Soyustova, Comparison of Liquid Metal Solution Model Predictions with Data of Niobium with Liquid Sodium, J. Nucl. Mater. 451 (2014) 24.

DOI: 10.1016/j.jnucmat.2014.03.023

Google Scholar

[11] C.H.P. Lupis, Chemical Thermodynamic of Materials (Amsterdam: North-Holland Press), 1983, p.160.

Google Scholar

[12] R.L. Klueh, Effect of Oxygen on Niobium-Sodium Compatibility Corrosion, USA. 27 (1971) 342.

DOI: 10.5006/0010-9312-27.8.342

Google Scholar

[13] B.J. Shaiu, P.C.S. Wu, P. Chiotti, Thermodynamic Properties of the Double Oxides of Cr, Ni and Fe, J. Nucl. Mater. 67 (1977) 13.

Google Scholar

[14] M.G. Barker, D.J. Wood, The Corrosion of Chromium, Iron and Stainless Steel in sodium Less-Common Metals. 35 (1974) 315.

DOI: 10.1016/0022-5088(74)90243-4

Google Scholar

[15] A.W. Thorley, C. Tyzack, Proc. Conf. Liquid Alkali Metals, BNES, Nottingham, 1973, p.257.

Google Scholar

[16] M.V. Polley, G. Skyrme, An Analysis of the Corrosion of Pure Iron in Sodium Loop, Mater. 66 (1977) 221.

Google Scholar

[17] M. Blander, M.-L. Saboungi, P. Cerisier, A Statistical Mechanical Theory for Activity of a Dilute Solute in a Binary Solvent Metallurgical Transactions. 10B (1979) 613.

DOI: 10.1007/bf02662564

Google Scholar