Thixotropic Magnetorheological Fluid for Controlled Vibration Mounts

Article Preview

Abstract:

The article is devoted to the development of the composition of a thixotropic magnetorheological fluid and a laboratory setup for determining the properties and characteristics of magnetorheological fluids. The magnetorheological fluid was developed on the basis of copolymers of methyl methacrylate and n-butyl methacrylate, a mixture of diethylbenzenes, dioctylphthalate, oleic acid, and carbonyl iron of the P-10 grade. To impart thixotropic properties to the magnetorheological fluid, a 1% solution of modified urea is added. For the study of magnetorheological materials, a laboratory setup was developed that allows one to measure the yield stress, plastic viscosity, flow curves, magnetorheological characteristics and the magnetization curve. The setup includes two hydraulically connected cylindrical vessels and one external cylindrical vessel filled with the investigated magnetorheological fluid between two poles of a powerful magnet. The shear stress is determined through the magnitude of the viscous friction force that occurs when a load immersed in the liquid is evenly lifted, and the strength and induction of the magnetic field are determined by means of two Hall sensors.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1085)

Pages:

125-130

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.N. An, B. Sun, S.J. Picken, E. Mendes, Long time response of soft magnetorheological gels, J. Phys. Chem. B 116 (2012) 4702–4711.

DOI: 10.1021/jp301482a

Google Scholar

[2] A.K. Bastola, V.T. Hoang, L. Li, A novel hybrid magnetorheological elastomer developed by 3D printing, Mater. Des. 114 (2017) 391–397.

DOI: 10.1016/j.matdes.2016.11.006

Google Scholar

[3] M. Lokander, B. Stenberg, Performance of isotropic magnetorheological rubber materials, Polym. Test. 22 (2003) 245–251.

DOI: 10.1016/s0142-9418(02)00043-0

Google Scholar

[4] J.D. Carlson, M.R. Jolly, MR fluid, foam and elastomer devices, Mechatronics 10 (2000) 15.

DOI: 10.1016/s0957-4158(99)00064-1

Google Scholar

[5] L. Chen, X.L. Gong, W.H. Li, Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers, Smart Mater. Struct. 16 (2007) 2645–2650.

DOI: 10.1088/0964-1726/16/6/069

Google Scholar

[6] M. Zrinyi, J. Gacs, C. Simon, Magnetic field sensitive polymer gels and uses thereof, Patent WO 9702580 (1996).

Google Scholar

[7] D. Szabo, G. Szeghy, M. Zrinyi, Shape Transition of Magnetic Field Sensitive Polymer Gels, Macromolecules 31 (1998) 6541-6548.

DOI: 10.1021/ma980284w

Google Scholar

[8] E.F. Levina, L.S. Mironova, L.V. Nikitin, G.V. Stepanov, Magnetic controllable flexible composite material, Patent RU2157013C2 (1998).

Google Scholar

[9] L.V Nikitin, L.S. Mironova, G.V. Stepanov, A.N. Samus, The influence of a magnetic field on the elastic and viscous properties of magnetoelastics, J. Polymer Science Ser. A 43 (2001) 443-450.

DOI: 10.4028/www.scientific.net/msf.373-376.453

Google Scholar

[10] L.V. Nikitin, L.S. Mironova, K. Kornev, G.V. Stepanov, The magnetic, elastic, structural, and magnetodeformational properties of magnetoelastics, Vysokomolekularnye Soedineniya. Ser.A Ser.B Ser.C - Kratkie Soobshcheniya. 46 (2004) 498-509.

Google Scholar

[11] L.V. Nikitin, G.V. Stepanov, L.S. Mironova, A.I. Gorbunov, Magnetodeformational effect and effect of shape memory in magnetoelastics, J. of magnet. and magnetic mat. 272 (2004) 2072-2073.

DOI: 10.1016/j.jmmm.2003.12.838

Google Scholar

[12] G.V. Stepanov, A.I. Gorbunov, Magnetoelastic composite: synthesis and properties, Chemical industry today 9 (2005) 25-32.

Google Scholar

[13] G.V. Stepanov, E.Yu. Kramarenko, Twelve properties of a magnetoactive elastomer, 17th Inter.l Pless Sci. Conf. on Nanodis. Magn. Fluids (2016) 187-197.

Google Scholar

[14] A. Fuchs, Q. Zhang, J. Elkins, F. Gordaninejad, C. Evrensel, Development and characterization of magnetorheological elastomers, J. Appl. Polym. Sci. 105 (2007) 2497–2508.

DOI: 10.1002/app.24348

Google Scholar

[15] X.L. Gong, X.Z. Zhang, P.Q. Zhang, Fabrication and characterization of isotropic magnetorheological elastomers, Polym. Test. 24 (2005) 669–676.

DOI: 10.1016/j.polymertesting.2005.03.015

Google Scholar

[16] Y. Wang, Y. Hu, X.L. Gong, W. Jiang, P. Zhang, Z. Chen, Preparation and properties of magnetorheological elastomers based on silicon rubber/polystyrene blend matrix, J. Appl. Polymer Sci. 103 (2007) 3143–3149.

DOI: 10.1002/app.24598

Google Scholar

[17] Y. Hu, Y.L. Wang, X.L. Gong, X.Q. Gong, X.Z. Zhang, W.Q. Jiang, P.Q. Zhang, Z.Y. Chen, New magnetorheological elastomers based on polyurethane/si-rubber hybrid, Polym. Test. 24 (2005) 324–329.

DOI: 10.1016/j.polymertesting.2004.11.003

Google Scholar

[18] S.A. Demchuk, V.A. Kuz'min, Viscoelastic properties of magnetorheological elastomers in the regime of dynamic deformation, J. Eng. Phys. Thermophys. 75 (2002) 396–400.

Google Scholar

[19] L. Chen, X.L. Gong, W.Q. Jiang, J. Yao, H.X. Deng, W.H. Li, Investigation on magnetorheological elastomers based on natural rubber, J. Mater. Sci. 42 (2007) 5483–5489

DOI: 10.1007/s10853-006-0975-x

Google Scholar

[20] T.L. Sun, X.L. Gong, W.Q. Jiang, J.F. Li, Z.B. Xu, W.H. Li, Study on the damping properties of magnetorheological elastomers based on cis-polybutadiene rubber, Polym. Testing 27 (2008) 520–526.

DOI: 10.1016/j.polymertesting.2008.02.008

Google Scholar

[21] I. Agirre-Olabide, P. Kuzhir, M.J. Elejabarrieta, Linear magneto-viscoelastic model based on magnetic permeability components for anisotropic magnetorheological elastomers, J. Magn. Magn. Mater. 446 (2018) 155–161

DOI: 10.1016/j.jmmm.2017.09.017

Google Scholar

[22] A.V. Chertovich, G.V. Stepanov, E.Y. Kramarenko, A.R. Khokhlov, New composite elastomers with giant magnetic response, Macromol. Mater. Eng. 295 (2010) 336–341.

DOI: 10.1002/mame.200900301

Google Scholar

[23] T. Tian, M. Nakano, Fabrication and characterisation of anisotropic magnetorheological elastomer with 45° iron particle alignment at various silicone oil concentrations, J. of Intel. Mat. Sys. and Struc. 29 (2017).

DOI: 10.1177/1045389x17704071

Google Scholar

[24] G. Falkovich, Fluid Mechanics, sec. ed., Cambridge Univ Press, Cambridge, 2018.

Google Scholar

[25] Information on https://lordfulfillment.com/pdf/44/DS7012_MRF-140CGMRFluid.pdf

Google Scholar