[1]
T. W. Cain and J. P. Labukas, "The development of β phase Mg–Li alloys for ultralight corrosion resistant applications," npj Mater. Degrad., vol. 4, no. 1, 2020.
DOI: 10.1038/s41529-020-0121-2
Google Scholar
[2]
B. J. Wang, J. Y. Luan, D. K. Xu, J. Sun, C. Q. Li, and E. H. Han, "Research Progress on the Corrosion Behavior of Magnesium–Lithium-Based Alloys: A Review," Acta Metall. Sin. (English Lett., vol. 32, no. 1, p.1–9, 2019.
DOI: 10.1007/s40195-018-0847-9
Google Scholar
[3]
T. Al-Samman, "Comparative study of the deformation behavior of hexagonal magnesium-lithium alloys and a conventional magnesium AZ31 alloy," Acta Mater., vol. 57, no. 7, p.2229–2242, 2009.
DOI: 10.1016/j.actamat.2009.01.031
Google Scholar
[4]
J. Pezda and A. Białobrzeski, "Registration of Melting and Crystallization Process of Ultra-light Weight MgLi12,5 Alloy with Use of ATND Method," Arch. Foundry Eng., vol. 12, no. 2, p.143–146, 2012.
DOI: 10.2478/v10266-012-0053-6
Google Scholar
[5]
P. Gill, N. Munroe, R. Dua, and S. Ramaswamy, "Corrosion and Biocompatibility Assessment of Magnesium Alloys," J. Biomater. Nanobiotechnol., vol. 03, no. 01, p.10–13, 2012.
DOI: 10.4236/jbnb.2012.31002
Google Scholar
[6]
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. The National Academy Press, 2001.
DOI: 10.17226/10026
Google Scholar
[7]
"National Academy Press," Disaster Prev. Manag. An Int. J., vol. 8, no. 4, p.23, Oct. 1999.
Google Scholar
[8]
S. S. Nene, B. P. Kashyap, N. Prabhu, Y. Estrin, and T. Al-Samman, "Biocorrosion and biodegradation behavior of ultralight Mg–4Li–1Ca (LC41) alloy in simulated body fluid for degradable implant applications," J. Mater. Sci., vol. 50, no. 8, p.3041–3050, 2015.
DOI: 10.1007/s10853-015-8846-y
Google Scholar
[9]
D. Szklarska and P. Rzymski, "Is Lithium a Micronutrient? From Biological Activity and Epidemiological Observation to Food Fortification," Biol. Trace Elem. Res., vol. 189, no. 1, p.18–27, 2019.
DOI: 10.1007/s12011-018-1455-2
Google Scholar
[10]
W. A. Counts, M. Friák, D. Raabe, and J. Neugebauer, "Using ab initio calculations in designing bcc Mg-Li alloys for ultra-lightweight applications," Acta Mater., vol. 57, no. 1, p.69–76, 2009.
DOI: 10.1016/j.actamat.2008.08.037
Google Scholar
[11]
I. Shin and E. A. Carter, "First-principles simulations of plasticity in body-centered-cubic magnesium-lithium alloys," Acta Mater., vol. 64, p.198–207, 2014.
DOI: 10.1016/j.actamat.2013.10.030
Google Scholar
[12]
R. Wu et al., "Recent progress in magnesium-lithium alloys," Int. Mater. Rev., vol. 60, no. 2, p.65–100, 2015.
Google Scholar
[13]
S. S. Nene, B. P. Kashyap, N. Prabhu, Y. Estrin, and T. Al-Samman, "Microstructure refinement and its effect on specific strength and bio-corrosion resistance in ultralight Mg-4Li-1Ca (LC41) alloy by hot rolling," J. Alloys Compd., vol. 615, p.501–506, 2014.
DOI: 10.1016/j.jallcom.2014.06.151
Google Scholar
[14]
O. Sivakesavam and Y. V. R. K. Prasad, "Characteristics of superplasticity domain in the processing map for hot working of as-cast Mg-11.5Li-1.5Al alloy," Mater. Sci. Eng. A, vol. 323, no. 1–2, p.270–277, 2002.
DOI: 10.1016/s0921-5093(01)01392-2
Google Scholar
[15]
M. Karami and R. Mahmudi, "Shear punch superplasticity in equal-channel angularly pressed Mg–12Li–1Zn alloy," Mater. Sci. Eng. A, vol. 576, p.156–159, 2013.
DOI: 10.1016/j.msea.2013.03.080
Google Scholar
[16]
T. C. Chang, J. Y. Wang, C. L. Chu, and S. Lee, "Mechanical properties and microstructures of various Mg-Li alloys," Mater. Lett., vol. 60, no. 27, p.3272–3276, 2006.
DOI: 10.1016/j.matlet.2006.03.052
Google Scholar
[17]
G. S. Song and M. V. Kral, "Characterization of cast Mg-Li-Ca alloys," Mater. Charact., vol. 54, no. 4–5, p.279–286, 2005.
DOI: 10.1016/j.matchar.2004.12.001
Google Scholar
[18]
G. Song and A. Atrens, "Understanding magnesium corrosion. A framework for improved alloy performance," Adv. Eng. Mater., vol. 5, no. 12, p.837–858, 2003.
DOI: 10.1002/adem.200310405
Google Scholar
[19]
R. C. Zeng, L. Sun, Y. F. Zheng, H. Z. Cui, and E. H. Han, "Corrosion and characterisation of dual phase Mg-Li-Ca alloy in Hank's solution: The influence of microstructural features," Corros. Sci., vol. 79, p.69–82, 2014.
DOI: 10.1016/j.corsci.2013.10.028
Google Scholar
[20]
M. Zhang et al., "The effect of Y/Er and Zn addition on the microstructure and mechanical properties of Mg-11Li alloy," Materials (Basel)., vol. 12, no. 3066, p.1–13, 2019.
DOI: 10.3390/ma12193066
Google Scholar
[21]
Y. H. Kim, J. H. Kim, H. S. Yu, J. W. Choi, and H. T. Son, "Microstructure and mechanical properties of Mg-xLi-3Al-1Sn-0.4Mn alloys (x = 5, 8 and 11 wt%)," J. Alloys Compd., vol. 583, p.15–20, 2014.
DOI: 10.1016/j.jallcom.2013.08.154
Google Scholar
[22]
J. Fei et al., "Biocompatibility and neurotoxicity of magnesium alloys potentially used for neural repairs," Mater. Sci. Eng. C, vol. 78, p.1155–1163, 2017.
DOI: 10.1016/j.msec.2017.04.106
Google Scholar
[23]
S. Nayak, B. Bhushan, R. Jayaganthan, P. Gopinath, R. D. Agarwal, and D. Lahiri, "Strengthening of Mg based alloy through grain refinement for orthopaedic application," J. Mech. Behav. Biomed. Mater., vol. 59, p.57–70, 2016.
DOI: 10.1016/j.jmbbm.2015.12.010
Google Scholar
[24]
Y. Sun, M. X. Kong, and X. H. Jiao, "In-vitro evaluation of Mg-4.0Zn-0.2Ca alloy for biomedical application," Trans. Nonferrous Met. Soc. China (English Ed., vol. 21, no. SUPPL. 2, pp. s252–s257, 2011.
DOI: 10.1016/s1003-6326(11)61587-2
Google Scholar
[25]
D. Bian, W. Zhou, Y. Liu, N. Li, Y. Zheng, and Z. Sun, "Fatigue behaviors of HP-Mg, Mg–Ca and Mg–Zn–Ca biodegradable metals in air and simulated body fluid," Acta Biomater., vol. 41, p.351–360, 2016.
DOI: 10.1016/j.actbio.2016.05.031
Google Scholar
[26]
N. Hort et al., "Magnesium alloys as implant materials-Principles of property design for Mg-RE alloys," Acta Biomater., vol. 6, no. 5, p.1714–1725, 2010.
DOI: 10.1016/j.actbio.2009.09.010
Google Scholar
[27]
W. Weng, A. Biesiekierski, Y. Li, M. Dargusch, and C. Wen, "A review of the physiological impact of rare earth elements and their uses in biomedical Mg alloys," Acta Biomater., vol. 130, p.80–97, 2021.
DOI: 10.1016/j.actbio.2021.06.004
Google Scholar
[28]
N. Peruzzi et al., "Multimodal ex vivo methods reveal that Gd-rich corrosion byproducts remain at the implant site of biodegradable Mg-Gd screws," Acta Biomater., vol. 136, p.582–591, 2021.
DOI: 10.1016/j.actbio.2021.09.047
Google Scholar
[29]
H. Fu et al., "Achieving High Strength and Ductility in Magnesium Alloys via Densely Hierarchical Double Contraction Nanotwins," Nano Lett., vol. 17, no. 10, p.6117–6124, 2017.
DOI: 10.1021/acs.nanolett.7b02641
Google Scholar
[30]
C. Q. Li et al., "Composition and microstructure dependent corrosion behaviour of Mg-Li alloys," Electrochim. Acta, vol. 260, p.55–64, 2018.
Google Scholar
[31]
B. Wang, K. Xu, D. Xu, X. Cai, Y. Qiao, and L. Sheng, "Anisotropic corrosion behavior of hot-rolled Mg-8 wt.%Li alloy," J. Mater. Sci. Technol., vol. 53, p.102–111, 2020.
DOI: 10.1016/j.jmst.2020.04.029
Google Scholar
[32]
X. B. Chen, C. Li, and D. Xu, "Biodegradation of Mg-14Li alloy in simulated body fluid: A proof-of-concept study," Bioact. Mater., vol. 3, no. 1, p.110–117, 2018.
DOI: 10.1016/j.bioactmat.2017.08.002
Google Scholar
[33]
S. Nene, B. P. Kashyap, N. Prabhu, T. Al-Samman, and Y. Estrin, "Effect of rolling on microstructure and room temperature tensile properties of newly developed Mg-4Li-1Ca alloy," Adv. Mater. Res., vol. 922, p.537–542, 2014.
DOI: 10.4028/www.scientific.net/amr.922.537
Google Scholar
[34]
L. Cui, L. Sun, R. Zeng, Y. Zheng, and S. Li, "In vitro degradation and biocompatibility of mg-li-ca alloys—the influence of li content," Sci. China Mater., vol. 61, no. 4, p.607–618, 2018.
DOI: 10.1007/s40843-017-9071-y
Google Scholar
[35]
Z. Y. Ding et al., "Exfoliation corrosion of extruded Mg-Li-Ca alloy," J. Mater. Sci. Technol., vol. 34, no. 9, p.1550–1557, 2018.
Google Scholar
[36]
H. Takuda, H. Matsusaka, S. Kikuchi, and K. Kubota, "Tensile properties of a few Mg-Li-Zn alloy thin sheets," J. Mater. Sci., vol. 37, no. 1, p.51–57, 2002.
Google Scholar
[37]
S. Kúdela Jr, P. Švec, O. Bajana, Ľ. Orovčík, P. Ranachowski, and Z. Ranachowski, "Strengthening in dual-phase structured Mg-Li-Zn alloys," Kov. Mater., vol. 54, p.483–489, 2016.
DOI: 10.4149/km_2016_6_483
Google Scholar
[38]
J. Guo, J. Wang, T. Zhang, and S. Zhang, "Microstructure and properties of LZ91 magnesium alloy processed by asynchronous accumulative roll bonding," Mater. Res. Express, vol. 7, no. 12, 2020.
DOI: 10.1088/2053-1591/abd068
Google Scholar
[39]
F. Guo, L. Liu, Y. Ma, L. Jiang, D. Zhang, and F. Pan, "Mechanism of phase refinement and its effect on mechanical properties of a severely deformed dual-phase Mg–Li alloy during annealing," Mater. Sci. Eng. A, vol. 772, no. September 2019, p.138792, 2020.
DOI: 10.1016/j.msea.2019.138792
Google Scholar
[40]
Y. Liu et al., "Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells," Acta Biomater., vol. 62, p.418–433, 2017.
DOI: 10.1016/j.actbio.2017.08.021
Google Scholar
[41]
J. Wu et al., "Effect of Lithium and Aluminum on the Mechanical Properties, in Vivo and in Vitro Degradation, and Toxicity of Multiphase Ultrahigh Ductility Mg-Li-Al-Zn Quaternary Alloys for Vascular Stent Application," ACS Biomater. Sci. Eng., vol. 6, no. 4, p.1950–1964, 2020.
DOI: 10.1021/acsbiomaterials.9b01591
Google Scholar
[42]
E. Hadasik, D. Kuc, T. Mikuszewski, and I. Schindler, "Microstructure and plastic properties of Mg-Li alloys smelted in vacuum induction furnaces after hot working," Arch. Metall. Mater., vol. 62, no. 3, p.1427–1432, 2017.
DOI: 10.1515/amm-2017-0220
Google Scholar
[43]
J. Przondziono, E. Hadasik, and J. Szala, "Electrochemical corrosion of magnesium alloy AZ31 with additive lithium," Arch. Metall. Mater., vol. 62, no. 4, p.2359–2363, 2017.
DOI: 10.1515/amm-2017-0347
Google Scholar
[44]
W. R. Zhou, Y. F. Zheng, M. A. Leeflang, and J. Zhou, "Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application," Acta Biomater., vol. 9, no. 10, p.8488–8498, 2013.
DOI: 10.1016/j.actbio.2013.01.032
Google Scholar
[45]
I. Bednarczyk, D. Kuc, and T. Mikuszewski, "The microstructure and mechanical properties of magnesium alloys Mg-Li-Re after the process of casting and extrusion," Arch. Metall. Mater., vol. 63, no. 1, p.35–38, 2018.
Google Scholar
[46]
W. Xu et al., "A high-specific-strength and corrosion-resistant magnesium alloy," Nat. Mater., vol. 14, no. 12, p.1229–1235, 2015.
Google Scholar
[47]
X. Zong, J. Zhang, W. Liu, J. Chen, K. Nie, and C. Xu, "Effects of Li on Microstructures, Mechanical, and Biocorrosion Properties of Biodegradable Mg94-xZn2Y4Lix Alloys with Long Period Stacking Ordered Phase," Adv. Eng. Mater., vol. 19, no. 3, p.1–8, 2017.
DOI: 10.1002/adem.201600606
Google Scholar
[48]
M. Liu, Z. Zhang, R. Wu, and Y. Wang, "Simultaneously Improving Strength and Ductility of Mg−3Li−8Gd−2Y−1.5Ag Alloy by Solution Treatment and Hot-Rolling Process," Adv. Eng. Mater., vol. 23, no. 9, p.1–9, 2021.
DOI: 10.1002/adem.202100530
Google Scholar
[49]
P. Gill, N. Munroe, and A. Datye, "Synthesis, characterization and mechanical properties of biodegradable magnesium alloys," Emerg. Mater. Res., vol. 2, no. EMR 1, p.45–52, 2013.
DOI: 10.1680/emr.12.00020
Google Scholar
[50]
C. Okafor, A. Datye, S. Zhang, U. D. Schwarz, Y. Cai, and N. Munroe, "Development and Biomaterial Characterization of Mg-Li-Zn-Ca Alloys," SSRN Electron. J., p.1–32, 2022.
DOI: 10.2139/ssrn.4052299
Google Scholar
[51]
Y. Zou et al., "Improvement of mechanical behaviors of a superlight Mg-Li base alloy by duplex phases and fine precipitates," J. Alloys Compd., vol. 735, p.2625–2633, 2018.
DOI: 10.1016/j.jallcom.2017.12.025
Google Scholar
[52]
R. J. Werkhoven, W. H. Sillekens, and J. B. J. M. Van Lieshout, "Processing aspects of magnesium alloy stent tube," Magnes. Technol., p.419–424, 2011.
DOI: 10.1002/9781118062029.ch79
Google Scholar
[53]
Y. Zhang, J. Zhang, G. Wu, W. Liu, L. Zhang, and W. Ding, "Microstructure and tensile properties of as-extruded Mg-Li-Zn-Gd alloys reinforced with icosahedral quasicrystal phase," Mater. Des., vol. 66, no. PA, p.162–168, 2015.
DOI: 10.1016/j.matdes.2014.10.049
Google Scholar