[1]
W. Wu, R. Wang, C. Zhu, and Q. Meng, "The effect of fly ash and silica fume on mechanical properties and durability of coral aggregate concrete," Constr. Build. Mater. vol. 185, p.69–78, 2018.
DOI: 10.1016/j.conbuildmat.2018.06.097
Google Scholar
[2]
S. W. Tang, Y. Yao, C. Andrade, and Z. J. Li, "Recent durability studies on concrete structure," Cem. Concr. Res., vol. 78, p.143–154, 2015.
Google Scholar
[3]
A. J. Andersson et al., "Ecological and socioeconomic strategies to sustain Caribbean coral reefs in a high-CO2 world," Reg. Stud. Mar. Sci., vol. 29, p.100677, 2019.
Google Scholar
[4]
Z. Sun, L. Zhang, D. Niu, B. Wen, and D. Luo, "Time-varying model for predicting the resistivity of coral aggregate concrete," Constr. Build. Mater. vol. 265, p.120588, 2020.
DOI: 10.1016/j.conbuildmat.2020.120588
Google Scholar
[5]
R. Jones, P. Bessell-Browne, R. Fisher, W. Klonowski, and M. Slivkoff, "Assessing the impacts of sediments from dredging on corals," Mar. Pollut. Bull., vol. 102, no. 1, p.9–29, 2016.
DOI: 10.1016/j.marpolbul.2015.10.049
Google Scholar
[6]
Lorman, W.K.: Characteristics of coral aggregate from selected locations in the Pacific Ocean Area[R]. TN-335A, USN Civil Engineering Laboratory USN CEL, (1958).
Google Scholar
[7]
Scholer, C.H.: Examination and study of certain structures in the Pacific Ocean Area, progress report. In: USNCEL, Contract NBy- 3171, USN CEL (1959).
Google Scholar
[8]
Narver, D.L.: Good concrete made with coral and sea water. Civil Engineering. Part I(ASCE, October 1954), p.40–44. Part II (ASCE, November 1954), p.49–52.
Google Scholar
[9]
Yuan, Y.F.: Mix Design and Property of Coral Aggregate Concrete. Nanjing University of Aeronautics and Astronautics, Nanjing (2015)
Google Scholar
[10]
Lorman, W.K.: Coral and coral concrete. TR-068, USN CEL (1960).
Google Scholar
[11]
Chen, Z.L.; Sun, G.F.; Tang, Y.N.; et al.: Study on applications of concretes from coral reef sand mixed with seawater for patching-up in reef engineering. Coast. Eng. 27(4), 60–69 (2008).
Google Scholar
[12]
P. A. Howdyshell, "The Use of Coral as an Aggregate for Portland Cement Concrete ...," 1974.
Google Scholar
[13]
D. Niu, L. Su, Y. Luo, D. Huang, and D. Luo, "Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete," Constr. Build. Mater. vol. 237, 2020.
DOI: 10.1016/j.conbuildmat.2019.117628
Google Scholar
[14]
Wang, J., Feng, P., Hao, T. and Yue, Q., 2017. Axial compressive behavior of seawater coral aggregate concrete-filled FRP tubes. Construction and Building Materials, 147, pp.272-285.
DOI: 10.1016/j.conbuildmat.2017.04.169
Google Scholar
[15]
P. A. Nagar, N. Gupta, K. Kishore, and A. K. Parashar, "Coupled effect of B. Sphaericus bacteria and calcined clay mineral on OPC concrete," Mater. Today Proc., vol. 44, no. 1, p.113–117, 2020.
DOI: 10.1016/j.matpr.2020.08.029
Google Scholar
[16]
P. Sonia, J. K. Jain, and K. K. Saxena, "Influence of ultrasonic vibration assistance in manufacturing processes: A Review," Mater. Manuf. Process., vol. 36, no. 13, p.1451–1475, 2021.
DOI: 10.1080/10426914.2021.1914843
Google Scholar
[17]
U. Sharma, N. Gupta, and K. K. Saxena, "Comparative study on the effect of industrial by-products as a replacement of cement in concrete," Mater. Today Proc., vol. 44, no. xxxx, p.45–51, 2021.
DOI: 10.1016/j.matpr.2020.06.211
Google Scholar
[18]
A. Dhawan, N. Gupta, R. Goyal, and K. K. Saxena, "Evaluation of mechanical properties of concrete manufactured with fly ash, bagasse ash and banana fibre," Mater. Today Proc., vol. 44, no. xxxx, p.17–22, 2021.
DOI: 10.1016/j.matpr.2020.06.006
Google Scholar
[19]
A. Awasthi, K. K. Saxena, and V. Arun, "Sustainable and smart metal forming manufacturing process," Mater. Today Proc., vol. 44, no. 2021, p.2069–2079, 2021.
DOI: 10.1016/j.matpr.2020.12.177
Google Scholar
[20]
K. Kishore and N. Gupta, "Exposure of calcined clay and low calcium flyash-based mortar on moderate acid environment," IOP Conf. Ser. Mater. Sci. Eng., vol. 1116, no. 1, p.012165, 2021.
DOI: 10.1088/1757-899x/1116/1/012165
Google Scholar
[21]
K. Kishore and N. Gupta, "Mechanical characterization and assessment of composite geopolymer concrete," Mater. Today Proc., vol. 44, no. 1, p.58–62, 2020.
DOI: 10.1016/j.matpr.2020.06.319
Google Scholar
[22]
N. Gupta, K. Kishore, K. K. Saxena, and T. C. Joshi, "Influence of industrial by-products on the behavior of geopolymer concrete for sustainable development," Indian J. Eng. Mater. Sci., vol. 28, no. October, p.433–445, 2021.
Google Scholar
[23]
N. Kumar et al., "An overview of the machinability of alloy steel," Mater. Today Proc., no. xxxx, 2022.
Google Scholar
[24]
K. Kishore and N. Gupta, "Application of domestic & industrial waste materials in concrete: A review," Mater. Today Proc., vol. 26, no. 2, p.2926–2931, 2020.
DOI: 10.1016/j.matpr.2020.02.604
Google Scholar
[25]
P. K. Mehta and H. H. Haynes, "Durability of Concrete in Seawater," ASCE J Struct Div, vol. 101, no. 8, p.1679–1686, 1975.
DOI: 10.1061/jsdeag.0004131
Google Scholar
[26]
M. Bazli et al., "Durability of seawater and sea sand concrete filled filament wound FRP tubes under seawater environments," Compos. Part B Eng., vol. 202, no. May, p.108409, 2020.
DOI: 10.1016/j.compositesb.2020.108409
Google Scholar
[27]
A. K. Parashar, N. Gupta, K. Kishore, and P. A. Nagar, "An experimental investigation on mechanical properties of calcined clay concrete embedded with bacillus subtilis," Mater. Today Proc., vol. 44, no. 1, p.129–134, 2020.
DOI: 10.1016/j.matpr.2020.08.031
Google Scholar
[28]
A. Shukla, K. Kishore, and N. Gupta, "Mechanical properties of cement mortar with Lime & Rice hush ash," IOP Conf. Ser. Mater. Sci. Eng., vol. 1116, no. 1, p.012025, 2021.
DOI: 10.1088/1757-899x/1116/1/012025
Google Scholar
[29]
R. Tomar, K. Kishore, H. Singh Parihar, and N. Gupta, "A comprehensive study of waste coconut shell aggregate as raw material in concrete," Mater. Today Proc., vol. 44, no. xxxx, p.437–443, 2020.
DOI: 10.1016/j.matpr.2020.09.754
Google Scholar
[30]
K. Kishore, N. Gupta, K. K. Saxena, and L. Lade, "Development and characterisation of bacteria as a potential application in enduring the mechanical and durability characteristic of cement," Adv. Mater. Process. Technol., vol. 00, no. 00, p.1–18, 2021.
DOI: 10.1080/2374068x.2021.1959115
Google Scholar
[31]
Mi, R.J.; Yu, H.F.; Ma, H.Y.; et al.: Study on the mechanical property of coral concrete. Ocean Eng. 34(4), 47–54 (2016)
Google Scholar
[32]
Xiong, Z.Q.: A Research of Mechanical Property and Microstructure of Coral Concrete with Polypropylene Fiber. Guilin University of Technology, Guilin (2014)
Google Scholar
[33]
Hu, H.M.; Ma, B.G.; Qian, G.; et al.: Analysis and simulation of influencing factors on anti-corrosion of lining concrete for Submarine Tunnel. J. Wuhan Univ. Technol. 29(3), 46–49 (2007)
Google Scholar
[34]
Xu, C.; Li, Z.; Yang, J.B.: Research on mixing proportion test of cemented coral reef sand. Hydrogeol. Eng. Geol. 41(5), 70–74 (2014)
Google Scholar
[35]
Da, B.; Yu, H.; Ma, H.; et al.: Chloride diffusion study of coral concrete in a marine environment. Constr. Build. Mater. 123, 47– 58 (2016)
Google Scholar
[36]
Chen, C.; Ji, T.; Zhuang, Y.; et al.: Workability, mechanical properties and affinity of artificial reef concrete. Constr. Build. Mater. 98, 227–236 (2015)
DOI: 10.1016/j.conbuildmat.2015.05.109
Google Scholar
[37]
Pan, B.Z.; Wei, Z.B.: Experimental study on effects to coral sand concrete compressive strength of raw materials. Eng.Mech.32 (S1), 221–225 (2015)
Google Scholar
[38]
P. Hou et al., "Comparison study on the sulfate attack resistivity of cement-based materials modified with nanoSiO2 and normal SCMs: Pore structure and phase composition," Constr. Build. Mater., vol. 228, p.116764, 2019.
DOI: 10.1016/j.conbuildmat.2019.116764
Google Scholar
[39]
M. F. Nuruddin, S. Qazi, and A. Kusbiantoro, "Mix Design of Polymeric Concrete Incorporating Fly Ash , Rice Husk Ash and Silica Fume," vol. 2, no. 1, p.1–11, 2008.
Google Scholar
[40]
Sun, B.L.: Mechanical property test of silica fume reinforced coral concrete. Low Temp. Archit. Technol. 36(8), 12–14 (2014)
Google Scholar
[41]
Liu, C.P.: A Research of Mechanical Property and Alkali Erosion of Sisal Fiber Reinforced Coral Concrete [D]. Guilin University of Technology, Guilin (2014)
Google Scholar
[42]
Liu, C.P.; Liu, C.X.; Deng, X.L.; et al.: Microstructure test of sisal fiber reinforced coral concrete. Low Temp. Archit. Technol. 38(4), 7–9 (2016)
Google Scholar
[43]
Chen, Y.Z.; Ma, Z.Q.; Sun, T.; et al.: Effect of Mineral admixtures on coral sand concrete. World Build. Mater. 37(2), 11–14 (2016)
Google Scholar
[44]
Mi, R.J.; Yu, H.F.; Ma, H.Y.; et al.: Study on the mechanical property of coral concrete. Ocean Eng. 34(4), 47–54 (2016)
Google Scholar
[45]
A. H. Memon, S. S. Radin, M. F. M. Zain, and J. F. Trottier, "Effects of mineral and chemical admixtures on high-strength concrete in seawater," Cem. Concr. Res., vol. 32, no. 3, p.373–377, 2002.
DOI: 10.1016/s0008-8846(01)00687-1
Google Scholar
[46]
K. Parthiban, K. Saravanarajamohan, S. Shobana, and A. Anchal Bhaskar, "Effect of replacement of Slag on the mechanical properties of flyash based Geopolymer Concrete," Int. J. Eng. Technol., vol. 5, no. 3, p.2555–2559, 2013.
Google Scholar
[47]
Xiong, Z.Q.: A Research of Mechanical Property and Microstructure of Coral Concrete with Polypropylene Fiber. Guilin University of Technology, Guilin (2014)
Google Scholar
[48]
Wang, L.; Wang, G.X.; Deng, X.L.: Research on the mechanical properties of different content carbon fiber coral concrete. China Rural Water Hydropower 9, 148–151 (2014)
Google Scholar
[49]
Hu, J.; Xu, L.H.; Deng, F.Q.; et al.: Nanoscale mechanical proper- ties of interfacial transition zone between polypropylene fiber and cement matrix. J. Chin. Ceram. Soc. 44(2), 268–278 (2016)
Google Scholar
[50]
Wang, L.; Liu, C.P.; Xiong, Z.J.: Study test on mechanical property of sisal fiber reinforced coral concrete. J. Henan Polytech. Univ. (Nat. Sci.) 33(6), 826–830 (2014)
Google Scholar
[51]
Li, Z.X. Wei, Z.B.; Shen, J.L.; et al.: For cast model of compressive strength of coral concrete based on BP neural network. Concrete 1, 64–69 (2016)
Google Scholar
[52]
Li, Z.X. Wei, Z.B.; Shen, J.L.; et al.: Application of relevance vector machine to prediction of compressive strength ofcoral concrete. Concrete 7, 1–6 (2016)
Google Scholar
[53]
S. Cheng, Z. Shui, T. Sun, R. Yu, G. Zhang, and S. Ding, "Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete," Appl. Clay Sci., vol. 141, p.111–117, 2017.
DOI: 10.1016/j.clay.2017.02.026
Google Scholar
[54]
Peng, Z., Peng, S., Li, D., Fan, J., 2016. Experimental research on mechanical performance of inorganic polmer coral sand concrete. J. Wuhan Univ. Technol. 38 (11), 92e96.
Google Scholar
[55]
S. Cheng, Z. Shui, R. Yu, T. Sun, and X. Zhang, "Multiple influences of internal curing and supplementary cementitious materials on the shrinkage and microstructure development of reefs aggregate concrete," Constr. Build. Mater., vol. 155, p.522–530, 2017.
DOI: 10.1016/j.conbuildmat.2017.08.037
Google Scholar
[56]
B. Da, "Research on the Preparation Technology, Durability and Mechanical Properties of Concrete Members of High Strength Coral Aggregate Seawater Concrete," Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2017.
Google Scholar
[57]
Da, B.; Yu, H.F.; Ma, H.Y.; et al.: Factors influencing durability of coral concrete structure in the South China Sea. J. Chin. Ceram. Soc. 44(2), 253–260 (2016)
Google Scholar
[58]
Wanchai, Y.: Study on strength and durability of concrete using low quality coarse aggregate from circum-pacific region. In: Fourth Regional Symposium on Infrastructure Development in Civil Engineering (RSID4), April 2003, Bangkok, Thailand.
Google Scholar
[59]
Wattanachai, P.; Otsuki, N.; Saito, T.; et al.: A study on chloride ion diffusivity of porous aggregate concretes and improvement method. Doboku Gakkai Ronb. E 65(1), 30–44 (2009)
DOI: 10.2208/jsceje.65.30
Google Scholar
[60]
Dou, X.M.; Yu, H.F.; Ma, H.Y.; et al.: Surface chloride concentration profiles of coral concrete exposed to marine environment. Bull. Chin. Ceram. Soc. 35(9), 2695–2700 (2016)
Google Scholar
[61]
Chen, F.X.; Zhang, G.Z.; Ding, S.; et al.: Experimental Research on the properties of coral concrete. Concrete Ce. Prod. 7, 16–21 (2016)
Google Scholar
[62]
Da, B.; Yu, H.F.; Ma, H.Y.; et al.: Surface free chloride concentration and apparent chloride diffusion coefficient of coral seawater concrete. J. Southeast Univ. (Nat. Sci. Edit.) 46(5), 1093–1097 (2016)
Google Scholar
[63]
Chen, Z.L.; Tang, Y.L.; Sun, G.F.; et al.: Research on durability and application of seawater concrete. Ocean Eng. 26(4), 102–106 (2008)
Google Scholar
[64]
Yu, Q.; Jiang, Z.C.: Study on durability of concrete prepared with coral reef sand and seawater in the Xisha Island. Constr. Technol. 42(5), 258–260 (2013)
Google Scholar
[65]
Li, Y.T.; Zhou, L.; Zhang, Y.; et al.: Study on long-term perfor- mance of concrete based on seawater, sea sand and coral sand. Adv. Mater. Res. 706–708, 512–515 (2013)
DOI: 10.4028/www.scientific.net/amr.706-708.512
Google Scholar
[66]
Kishore, K., Tomar, R.; Understanding the role of interfacial transition zone in cement paste and concrete. Mater. Today Proc., xxxx, (2022).
DOI: 10.1016/j.matpr.2022.11.322
Google Scholar
[67]
B. Liu et al., "The mechanical properties and microstructure of carbon fibers reinforced coral concrete," Constr. Build. Mater., vol. 249, p.118771, 2020.
Google Scholar
[68]
P. Singhal and K. K. Saxena, "Effect of silicon addition on microstructure and mechanical properties of grey cast Iron: An overview," Mater. Today Proc., vol. 26, no. xxxx, p.1393–1401, 2019.
DOI: 10.1016/j.matpr.2020.02.281
Google Scholar