[1]
N. K. Naik, K. S. Pandya, V. R. Kavala, W. Zhang, and N. A. Koratkar, "High-strain rate compressive behavior of multi-walled carbon nanotube dispersed thermoset epoxy resin," Journal of Composite Materials, vol. 49, no. 8, pp.903-910, 2014.
DOI: 10.1177/0021998314527329
Google Scholar
[2]
G. Mittal, V. Dhand, K. Y. Rhee, S.-J. Park, and W. R. Lee, "A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites," J. Ind. Eng. Chem., vol. 21, pp.11-25, 2015.
DOI: 10.1016/j.jiec.2014.03.022
Google Scholar
[3]
M. Bhattacharya, "Polymer Nanocomposites—A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers," Materials, vol. 9, no. 4, 2016.
DOI: 10.3390/ma9040262
Google Scholar
[4]
B. Ghosh, S. Gogoi, S. Thakur, and N. Karak, "Bio-based waterborne polyurethane/carbon dot nanocomposite as a surface coating material," Progress in Organic Coatings, vol. 90, pp.324-330, 2016.
DOI: 10.1016/j.porgcoat.2015.10.025
Google Scholar
[5]
R. S. Park et al., "Hysteresis in Carbon Nanotube Transistors: Measurement and Analysis of Trap Density, Energy Level, and Spatial Distribution," ACS Nano, vol. 10, no. 4, pp.4599-4608, 2016.
DOI: 10.1021/acsnano.6b00792
Google Scholar
[6]
M. Chaudhary, J. K. Jain, and T. Jain, "A Review on Bone Regeneration via Porosity Development Using Smart Manufacturing Techniques," in Advances in Mechanical and Materials Technology, (Lecture Notes in Mechanical Engineering, 2022, ch. Chapter 105, pp.1209-1221.
DOI: 10.1007/978-981-16-2794-1_105
Google Scholar
[7]
P. Sonia, J. K. Jain, and K. K. Saxena, "Influence of Severe Metal Forming Processes on Microstructure and Mechanical Properties of Mg alloys," J Advances in Materials Processing Technologies, pp.1-24, 2020.
DOI: 10.1080/2374068x.2020.1802554
Google Scholar
[8]
S. Roy, M. Bhadra, and S. Mitra, "Enhanced desalination via functionalized carbon nanotube immobilized membrane in direct contact membrane distillation," Separation and Purification Technology, vol. 136, pp.58-65, 2014.
DOI: 10.1016/j.seppur.2014.08.009
Google Scholar
[9]
C. Sorensen, E. Berge, and E. B. Nikolaisen, "Investigation of Fiber Distribution in Concrete Batches Discharged from Ready-Mix Truck," International Journal of Concrete Structures and Materials, vol. 8, no. 4, pp.279-287, 2014.
DOI: 10.1007/s40069-014-0083-2
Google Scholar
[10]
S. Roy, C. M. Hussain, and S. Mitra, "Carbon nanotube-immobilized super-absorbent membrane for harvesting water from the atmosphere," Environmental Science: Water Research & Technology, vol. 1, no. 6, pp.753-760, 2015.
DOI: 10.1039/c5ew00098j
Google Scholar
[11]
A. Equbal et al., "Application of the Combined ANN and GA for Multi-Response Optimization of Cutting Parameters for the Turning of Glass Fiber-Reinforced Polymer Composites," Mathematics, vol. 8, no. 6, 2020.
DOI: 10.3390/math8060947
Google Scholar
[12]
S.-k. Hong, D. Kim, S. Lee, B.-W. Kim, P. Theilmann, and S.-H. Park, "Enhanced thermal and mechanical properties of carbon nanotube composites through the use of functionalized CNT-reactive polymer linkages and three-roll milling," Composites Part A: Applied Science and Manufacturing, vol. 77, pp.142-146, 2015.
DOI: 10.1016/j.compositesa.2015.05.035
Google Scholar
[13]
H. Min et al., "Tough Carbon Nanotube‐Implanted Bioinspired Three‐Dimensional Electrical Adhesive for Isotropically Stretchable Water‐Repellent Bioelectronics," Adv. Funct. Mater., vol. 32, no. 8, 2021.
DOI: 10.1002/adfm.202107285
Google Scholar
[14]
D. C. Ferrier and K. C. Honeychurch, "Carbon Nanotube (CNT)-Based Biosensors," Biosensors, vol. 11, no. 12, 2021.
DOI: 10.3390/bios11120486
Google Scholar
[15]
S. Sharma et al., "Enhanced thermomechanical and electrical properties of multiwalled carbon nanotube paper reinforced epoxy laminar composites," Composites Part A: Applied Science and Manufacturing, vol. 104, pp.129-138, 2018, doi: 10.1016/j.compositesa. 2017.10.023.
DOI: 10.1016/j.compositesa.2017.10.023
Google Scholar
[16]
P. Chandrasekhar, "CNT Applications in Drug and Biomolecule Delivery," in Conducting Polymers, Fundamentals and Applications, 2018, ch. Chapter 10, pp.61-64.
DOI: 10.1007/978-3-319-69378-1_10
Google Scholar
[17]
Y. Luo and E. C. Alocilja, "Portable nuclear magnetic resonance biosensor and assay for a highly sensitive and rapid detection of foodborne bacteria in complex matrices," Journal of Biological Engineering, vol. 11, no. 1, 2017.
DOI: 10.1186/s13036-017-0053-8
Google Scholar
[18]
T. Jain, J. K. Jain, and K. K. Saxena, "Design and Comprehensive Study of Biodegradable Zinc–based Implants for Bio–medical Applications," Advances in Materials and Processing Technologies, pp.1-18, 2021.
DOI: 10.1080/2374068x.2021.1939555
Google Scholar
[19]
M. Ates, A. A. Eker, and B. Eker, "Carbon nanotube-based nanocomposites and their applications," J. Adhes. Sci. Technol., vol. 31, no. 18, pp.1977-1997, 2017.
DOI: 10.1080/01694243.2017.1295625
Google Scholar
[20]
J. Riquelme, C. Garzón, C. Bergmann, J. Geshev, and R. Quijada, "Development of multifunctional polymer nanocomposites with carbon-based hybrid nanostructures synthesized from ferrocene," Eur. Polym. J., vol. 75, pp.200-209, 2016, doi: 10.1016/j.eurpolymj. 2015.12.007.
DOI: 10.1016/j.eurpolymj.2015.12.007
Google Scholar
[21]
H. Zhou, G. Han, Y. Xiao, Y. Chang, and H.-J. Zhai, "A comparative study on long and short carbon nanotubes-incorporated polypyrrole/poly (sodium 4-styrenesulfonate) nanocomposites as high-performance supercapacitor electrodes," Synthetic Metals, vol. 209, pp.405-411, 2015.
DOI: 10.1016/j.synthmet.2015.08.014
Google Scholar
[22]
I. W. Nam and H. K. Lee, "Image Analysis and DC Conductivity Measurement for the Evaluation of Carbon Nanotube Distribution in Cement Matrix," International Journal of Concrete Structures and Materials, vol. 9, no. 4, pp.427-438, 2015.
DOI: 10.1007/s40069-015-0121-8
Google Scholar
[23]
M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar, "Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content," ACS Nano, vol. 3, no. 12, pp.3884-3890, 2009.
DOI: 10.1021/nn9010472
Google Scholar
[24]
A. J. S. Ahammad, J.-J. Lee, and M. A. Rahman, "Electrochemical Sensors Based on Carbon Nanotubes," Sensors, vol. 9, no. 4, pp.2289-2319, 2009.
DOI: 10.3390/s90402289
Google Scholar
[25]
M. Abdalla, D. Dean, D. Adibempe, E. Nyairo, P. Robinson, and G. Thompson, "The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite," Polymer, vol. 48, no. 19, pp.5662-5670, 2007.
DOI: 10.1016/j.polymer.2007.06.073
Google Scholar
[26]
H. Devendrappa, U. V. S. Rao, and M. V. N. A. Prasad, "Study of dc conductivity and battery application of polyethylene oxide/polyaniline and its composites," Journal of Power Sources, vol. 155, no. 2, pp.368-374, 2006.
DOI: 10.1016/j.jpowsour.2005.05.014
Google Scholar
[27]
L. Singh, B. Singh, and K. K. Saxena, "Manufacturing techniques for metal matrix composites (MMC): an overview," Advances in Materials and Processing Technologies, vol. 6, no. 2, pp.441-457, 2020.
DOI: 10.1080/2374068x.2020.1729603
Google Scholar
[28]
S. Roy, S. A. Ntim, S. Mitra, and K. K. Sirkar, "Facile fabrication of superior nanofiltration membranes from interfacially polymerized CNT-polymer composites," Journal of Membrane Science, vol. 375, no. 1-2, pp.81-87, 2011.
DOI: 10.1016/j.memsci.2011.03.012
Google Scholar
[29]
Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, "Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties," Prog. Polym. Sci., vol. 35, no. 3, pp.357-401, 2010.
DOI: 10.1016/j.progpolymsci.2009.09.003
Google Scholar
[30]
J. P. Pascault and R. J. J. Williams, Epoxy Polymers. 2010.
Google Scholar
[31]
J. Karger-Kocsis, "Epoxy Polymers New Materials and Innovations," Macromolecular Chemistry and Physics, vol. 211, no. 16, pp.1836-1836, 2010.
DOI: 10.1002/macp.201000278
Google Scholar
[32]
M. Choudhary, J. K. Jain, T. Jain, R. Agrawal, and S. Kumar, "Biocompatibility Enhancement of Magnesium Alloys via Surface Modification Method: A Review," in Recent Advances in Smart Manufacturing and Materials, (Lecture Notes in Mechanical Engineering, 2021, ch. Chapter 40, pp.423-431.
DOI: 10.1007/978-981-16-3033-0_40
Google Scholar
[33]
A. N. Technologies. "Carboxyl Functionalized Multi-Walled Carbon Nanotubes." Ad Nano. https://ad-nanotech.com/carboxyl-functionalized-mwcnt/ (accessed 2022).
Google Scholar