[1]
M.M. Benal, H.K Shivanand, Influence of heat treatment on the coefficient of thermal expansion of Al (6061) based hybrid composites, Mater. Sci. Eng. A. 435 (2006) 745-749.
DOI: 10.1016/j.msea.2006.07.136
Google Scholar
[2]
A.K. Srivastava, Statistical optimization of wire-EDM during the processing of hybrid MMC, Int. J. Mech. Prod. Eng. Res. Dev. 8 (2006)783-792.
Google Scholar
[3]
U.A. Kini, S.S. Sharma, K. Jagannath, P.R. Prabhu, G. Shankar, IJMME 9 (2015) 684-688
Google Scholar
[4]
J. Falsafi, M. Rosochowska, P. Jadhav, D. Tricker, Lower Cost Automotive Piston from 2124/SiC/25p Metal-Matrix Composite, SAE Int. L. Engines. 10 (2017)1984-1992.
DOI: 10.4271/2017-01-1048
Google Scholar
[5]
U. Avci U, S. Temiz, Compos. B. Eng. 131 (2017) 76–81.
Google Scholar
[6]
H. Lee, J.H. Choi, M.C. Jo, I. Jo, S.K. Lee, S. Lee, Effects of strain rate on. compressive properties in bimodal 7075 Al-SiC. p. composite, Met. Mater. Int. 24 (2018) 894-903.
DOI: 10.1007/s12540-018-0092-9
Google Scholar
[7]
R. Rodrıguez-Castro, R.C. Wetherhold, M.H. Kelestemur, Microstructure and mechanical behavior of functionally graded Al A359/SiCp composite, Mater. Sci. Eng. A. 323 (2002) 445-456.
DOI: 10.1016/s0921-5093(01)01400-9
Google Scholar
[8]
M.K. Surappa, Dry sliding wear of fly ash particle reinforced A356 Al composites, Wear. 265 (2008) 349-360.
DOI: 10.1016/j.wear.2007.11.009
Google Scholar
[9]
S. Chakraborty, S. Kar, S.K. Ghosh, V. Dey, Parametric optimization of electric discharge coating on Aluminium-6351 alloy with green compact silicon carbide and copper tool: a Taguchi coupled utility concept approach, Surf. Interfaces. 7 (2017) 47-57.
DOI: 10.1016/j.surfin.2017.02.001
Google Scholar
[10]
S.N. Murty, B.N. Rao, B.P. Kashyap, On the hot working characteristics of 2124 Al–SiCp metal matrix composites, Adv. Compos. Mater. 11 (2002) 105-120.
DOI: 10.1163/156855102760410315
Google Scholar
[11]
Y.C. Feng, L. Geng, P.Q. Zheng, Z.Z. Zheng, G.S. Wang GS, Fabrication and characteristic of Al-based hybrid composite reinforced with tungsten oxide particle and aluminium borate whisker by squeeze casting, Mater. Des. 29 (2008) 2023-2026
DOI: 10.1016/j.matdes.2008.04.006
Google Scholar
[12]
Z.Z. Chen, K. Tokaji, Effects of particle size on fatigue crack initiation and small crack growth in SiC particulate-reinforced aluminium alloy composites, Materials Letters. 58 (2004) 2314-2321.
DOI: 10.1016/j.matlet.2004.02.034
Google Scholar
[13]
M. Patel, B. Pardhi, S. Chopara, M. Pal, Lightweight composite materials for automotive-a review. Carbon Carbon. 1 (2018) 151.
Google Scholar
[14]
P.O. Babalola, C. Bolu, A.O. Inegbenebor, K.M. Odunfa, Development of aluminium matrix composites: a review, Int. J. Eng. Res. Technol. 2 (2014)1-11.
Google Scholar
[15]
B.V. Ramnath, C. Elanchezhian, R.M. Annamalai, S. Aravind, T.S.A. Atreya, V. Vignesh, C. Subramanian, Aluminium metal matrix composites–a review, Rev. Adv. Mater. Sci. 38 (2014) 55-60.
Google Scholar
[16]
V.P. Baisane, Y.S. Sable, M.M. Dhobe, P.M. Sonawane, Recent development and challenges in the processing of ceramics reinforced Al matrix composite through stir casting process: A Review, Int. J. Appl. Sci. Eng. 2 (2015) 257814.
Google Scholar
[17]
M. Sudhakar, C.H. Srinivasa Rao, K. Meera Saheb, Production of surface composites by friction stir processing, Mater. Today Proc. 5 (2018) 929–935
DOI: 10.1016/j.matpr.2017.11.167
Google Scholar
[18]
I. Dinaharan, Influence of ceramic particulate type on microstructure and tensile strength of aluminium matrix composites produced using friction stir processing, J. Asian Ceram. Soc. 4 (2016) 209-218.
DOI: 10.1016/j.jascer.2016.04.002
Google Scholar
[19]
N. Fatchurrohman, N. Farhana, C.D Marini, Investigation on the effect of friction stir processing parameters on microstructure and micro-hardness of rice husk ash reinforced Al6061 metal matrix composites, IOP. Conf. Ser. Mater. Sci. Eng. 319 (2018) 012032.
DOI: 10.1088/1757-899x/319/1/012032
Google Scholar
[20]
K. Kumar, P. Gulati, A. Gupta, D.K. Shukla, A review of friction stir processing of aluminium alloys using different types of reinforcements, Int. J. Mech. Eng. Technol 8 (2017) 1638-1651.
Google Scholar
[21]
D.K. Koli, G. Agnihotri, R. Purohit, A Review on Properties, Behaviour and Processing Methods for Al- Nano Al2O3 Composites, Procedia Materials Science. 6 (2014) 567-589.
DOI: 10.1016/j.mspro.2014.07.072
Google Scholar
[22]
V. Sharma, U. Prakash, B.M Kumar, Surface composites by friction stir processing: A review, J. Mater. Process. Technol. 224 (2015) 117-134.
DOI: 10.1016/j.jmatprotec.2015.04.019
Google Scholar
[23]
H. Das, M. Mondal, S.T. Hong, D.M. Chun, H.N. Han, Joining and fabrication of metal matrix composites by friction stir welding/processing, Int. J. Precis. Eng. Manuf. - Green Technol. 5 (2018) pp.151-172.
DOI: 10.1007/s40684-018-0016-7
Google Scholar
[24]
R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R Rep. 50 (2005) 1-78.
Google Scholar
[25]
O.M. Ikumapayi, E.T. Akinlabi, J.D. Majumdar, Review on thermal, thermo-mechanical and thermal stress distribution during friction stir welding, Int. J. Mech. Eng. Technol 9 (2018) 534-548.
Google Scholar
[26]
K.O. Sanusi, E.T. Akinlabi, Friction-stir processing of a composite aluminium alloy (AA 1050) reinforced with titanium carbide powder, Mater. Technol. 51 (2017) 427-435.
DOI: 10.17222/mit.2016.021
Google Scholar
[27]
N. Naghshehkesh, S. Mousavi, F. Karimzadeh, A. Ashrafi, M. Nosko, V. Trembošová, B. Sadeghi, Effect of graphene oxide and friction stir processing on microstructure and mechanical properties of Al5083 matrix composite. Materials Research Express. 6 (2019), 106566.
DOI: 10.1088/2053-1591/ab3a6f
Google Scholar
[28]
F. Khodabakhshi, M. Nosko, A.P. Gerlich, Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al-Mg alloy during friction-stir processing. Surface and Coatings Technology, 335 (2018), 288-305.
DOI: 10.1016/j.surfcoat.2017.12.045
Google Scholar
[29]
V.K.S. Jain, P.M. Muhammed, S. Muthukumaran, S.P. Babu, Microstructure, mechanical and sliding wear behavior of AA5083–B4C/SiC/TiC surface composites fabricated using friction stir processing, Trans. Indian Inst. Met. 71(2018) 1519-1529.
DOI: 10.1007/s12666-018-1287-y
Google Scholar
[30]
F. Ostovan, S. Amanollah, M. Toozandehjani, E. Shafiei, Fabrication of Al5083 surface hybrid nanocomposite reinforced by CNTs and Al2O3 nanoparticles using friction stir processing. Journal of Composite Materials. 54 (2020), 1107-1117
DOI: 10.1177/0021998319874849
Google Scholar
[31]
S. Joyson Abraham, S. Chandra Rao Madane, I.A. Dinaharan, L. John Baruch, Development of quartz particulate reinforced AA6063 aluminium matrix composites via friction stir processing. J. Asian Ceram. Soc. 4 (2016) 381-389.
DOI: 10.1016/j.jascer.2016.08.001
Google Scholar
[32]
I. Dinaharan, Influence of ceramic particulate type on microstructure and tensile strength of aluminium matrix composites produced using friction stir processing. Journal of Asian Ceramic Societies, 4 (2016), 209-218.
DOI: 10.1016/j.jascer.2016.04.002
Google Scholar
[33]
E.M. Zayed, N.S.M El-Tayeb, M.M.Z. Ahmed, R.M. Rashad, Development and characterization of AA5083 reinforced with SiC and Al 2 O 3 particles by friction stir processing. In Engineering design applications. Springer, Cham. 2019, 11-26
DOI: 10.1007/978-3-319-79005-3_2
Google Scholar
[34]
M. Khan, A. Rehman, T. Aziz, M. Shahzad, K. Naveed, T. Subhani, Effect of inter-cavity spacing in friction stir processed Al 5083 composites containing carbon nanotubes and boron carbide particles J. Mater. Process. Technol. 253 (2018) 72-85.
DOI: 10.1016/j.jmatprotec.2017.11.002
Google Scholar
[35]
N. Yuvaraj, S. Aravindan, Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization, J. Mater. Res. Technol. 4 (2015)398-410.
DOI: 10.1016/j.jmrt.2015.02.006
Google Scholar
[36]
S.A. Hosseini, K. Ranjbar, R. Dehmolaei, A.R. Amirani, Fabrication of Al5083 surface composites reinforced by CNTs and cerium oxide nanoparticles via friction stir processing. Journal of Alloys and Compounds, 622 (2015) pp.725-733.
DOI: 10.1016/j.jallcom.2014.10.158
Google Scholar
[37]
G.S. Raheja, S. Singh, C. Prakash. Development of hybrid Gr/SiC reinforced AMCs through friction stir processing. Materials Today: Proceedings. 2020.
DOI: 10.1016/j.matpr.2020.05.721
Google Scholar
[38]
S. Bharti, N.D. Ghetiya, V. Dutta, Investigating microhardness and wear behavior of Al5052/ZrO2 surface composite produced by friction stir processing. Materials Today: Proceedings. 44 (2021), 52-57.
DOI: 10.1016/j.matpr.2020.06.318
Google Scholar
[39]
F. Khodabakhshi, M. Nosko, A.P. Gerlich, Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al-Mg alloy during friction-stir processing, Surf. Coat. Technol. 335 (2018) 288-305.
DOI: 10.1016/j.surfcoat.2017.12.045
Google Scholar
[40]
C.D. Marini, N. Fatchurrohman, Z. Zulkfli, Investigation of wear performance of friction stir processed aluminium metal matrix composites. Materials Today: Proceedings, 46 (2021), 1740-1744.
DOI: 10.1016/j.matpr.2020.07.568
Google Scholar
[41]
A. Sharma, D. Narsimhachary, V.M. Sharma, B. Sahoo, J. Paul, Surface modification of Al6061-SiC surface composite through impregnation of graphene, graphite & carbon nanotubes via FSP: a tribological study. Surface and Coatings Technology, 368 (2019), 175-191.
DOI: 10.1016/j.surfcoat.2019.04.001
Google Scholar
[42]
M. Narimani, B. Lotfi, Z. Sadeghian, Evaluation of the microstructure and wear behaviour of AA6063-B4C/TiB2 mono and hybrid composite layers produced by friction stir processing. Surface and Coatings Technology, 285 (2016), 1-10.
DOI: 10.1016/j.surfcoat.2015.11.015
Google Scholar
[43]
R. Maurya, B. Kumar, S. Ariharan, J. Ramkumar, K. and Balani, Effect of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy. Materials & Design, 98 (2016), 155-166.
DOI: 10.1016/j.matdes.2016.03.021
Google Scholar