Metal Matrix Composite Developed with Marine Grades: A Review

Article Preview

Abstract:

Metal matrix composites (MMCs) are now one of the most significant groups of modern engineering materials as a result of the increased attention they have received in recent years. MMCs have recently been manufactured using a variety of technical specifications and techniques, with properties such as the ability to withstand thermal stability at the lowest possible cost, reduced weight and density, increased strength and toughness, and improved wear resistance. It is crucial to homogenize the distribution of the reinforcing phase during composite processing in order to generate particulate or fibrous solid microstructures, depending on the form of the reinforcing phase of the composite. This implies that new procedures must be employed to enhance the mechanical and microstructural properties of metal products. One of the answers to the above challenges is friction stir processing (FSP). FSP improves the surface quality, ductility, formability, strength, hardness, and fatigue life of metal alloys without altering the properties of metals in bulk. This study aims to review MMCs suitable for FSP-designed marine structures and identify knowledge gaps. According to the literature, MMCs are advanced materials capable of exhibiting microstructure, increased hardness, strength, excellent damping, wear, and reduced thermal expansion, making them suitable for a wide range of applications. Although FSP is recognized as a new secondary processing approach to enhance the microstructure and properties of MMCs, few studies have reported the production of MMCs suitable for marine applications. Therefore, this opens a large gap that needs to be filled and requires further investigation of MMCs development.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1085)

Pages:

77-89

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.M. Benal, H.K Shivanand, Influence of heat treatment on the coefficient of thermal expansion of Al (6061) based hybrid composites, Mater. Sci. Eng. A. 435 (2006) 745-749.

DOI: 10.1016/j.msea.2006.07.136

Google Scholar

[2] A.K. Srivastava, Statistical optimization of wire-EDM during the processing of hybrid MMC, Int. J. Mech. Prod. Eng. Res. Dev. 8 (2006)783-792.

Google Scholar

[3] U.A. Kini, S.S. Sharma, K. Jagannath, P.R. Prabhu, G. Shankar, IJMME 9 (2015) 684-688

Google Scholar

[4] J. Falsafi, M. Rosochowska, P. Jadhav, D. Tricker, Lower Cost Automotive Piston from 2124/SiC/25p Metal-Matrix Composite, SAE Int. L. Engines. 10 (2017)1984-1992.

DOI: 10.4271/2017-01-1048

Google Scholar

[5] U. Avci U, S. Temiz, Compos. B. Eng. 131 (2017) 76–81.

Google Scholar

[6] H. Lee, J.H. Choi, M.C. Jo, I. Jo, S.K. Lee, S. Lee, Effects of strain rate on. compressive properties in bimodal 7075 Al-SiC. p. composite, Met. Mater. Int. 24 (2018) 894-903.

DOI: 10.1007/s12540-018-0092-9

Google Scholar

[7] R. Rodrıguez-Castro, R.C. Wetherhold, M.H. Kelestemur, Microstructure and mechanical behavior of functionally graded Al A359/SiCp composite, Mater. Sci. Eng. A. 323 (2002) 445-456.

DOI: 10.1016/s0921-5093(01)01400-9

Google Scholar

[8] M.K. Surappa, Dry sliding wear of fly ash particle reinforced A356 Al composites, Wear. 265 (2008) 349-360.

DOI: 10.1016/j.wear.2007.11.009

Google Scholar

[9] S. Chakraborty, S. Kar, S.K. Ghosh, V. Dey, Parametric optimization of electric discharge coating on Aluminium-6351 alloy with green compact silicon carbide and copper tool: a Taguchi coupled utility concept approach, Surf. Interfaces. 7 (2017) 47-57.

DOI: 10.1016/j.surfin.2017.02.001

Google Scholar

[10] S.N. Murty, B.N. Rao, B.P. Kashyap, On the hot working characteristics of 2124 Al–SiCp metal matrix composites, Adv. Compos. Mater. 11 (2002) 105-120.

DOI: 10.1163/156855102760410315

Google Scholar

[11] Y.C. Feng, L. Geng, P.Q. Zheng, Z.Z. Zheng, G.S. Wang GS, Fabrication and characteristic of Al-based hybrid composite reinforced with tungsten oxide particle and aluminium borate whisker by squeeze casting, Mater. Des. 29 (2008) 2023-2026

DOI: 10.1016/j.matdes.2008.04.006

Google Scholar

[12] Z.Z. Chen, K. Tokaji, Effects of particle size on fatigue crack initiation and small crack growth in SiC particulate-reinforced aluminium alloy composites, Materials Letters. 58 (2004) 2314-2321.

DOI: 10.1016/j.matlet.2004.02.034

Google Scholar

[13] M. Patel, B. Pardhi, S. Chopara, M. Pal, Lightweight composite materials for automotive-a review. Carbon Carbon. 1 (2018) 151.

Google Scholar

[14] P.O. Babalola, C. Bolu, A.O. Inegbenebor, K.M. Odunfa, Development of aluminium matrix composites: a review, Int. J. Eng. Res. Technol. 2 (2014)1-11.

Google Scholar

[15] B.V. Ramnath, C. Elanchezhian, R.M. Annamalai, S. Aravind, T.S.A. Atreya, V. Vignesh, C. Subramanian, Aluminium metal matrix composites–a review, Rev. Adv. Mater. Sci. 38 (2014) 55-60.

Google Scholar

[16] V.P. Baisane, Y.S. Sable, M.M. Dhobe, P.M. Sonawane, Recent development and challenges in the processing of ceramics reinforced Al matrix composite through stir casting process: A Review, Int. J. Appl. Sci. Eng. 2 (2015) 257814.

Google Scholar

[17] M. Sudhakar, C.H. Srinivasa Rao, K. Meera Saheb, Production of surface composites by friction stir processing, Mater. Today Proc. 5 (2018) 929–935

DOI: 10.1016/j.matpr.2017.11.167

Google Scholar

[18] I. Dinaharan, Influence of ceramic particulate type on microstructure and tensile strength of aluminium matrix composites produced using friction stir processing, J. Asian Ceram. Soc. 4 (2016) 209-218.

DOI: 10.1016/j.jascer.2016.04.002

Google Scholar

[19] N. Fatchurrohman, N. Farhana, C.D Marini, Investigation on the effect of friction stir processing parameters on microstructure and micro-hardness of rice husk ash reinforced Al6061 metal matrix composites, IOP. Conf. Ser. Mater. Sci. Eng. 319 (2018) 012032.

DOI: 10.1088/1757-899x/319/1/012032

Google Scholar

[20] K. Kumar, P. Gulati, A. Gupta, D.K. Shukla, A review of friction stir processing of aluminium alloys using different types of reinforcements, Int. J. Mech. Eng. Technol 8 (2017) 1638-1651.

Google Scholar

[21] D.K. Koli, G. Agnihotri, R. Purohit, A Review on Properties, Behaviour and Processing Methods for Al- Nano Al2O3 Composites, Procedia Materials Science. 6 (2014) 567-589.

DOI: 10.1016/j.mspro.2014.07.072

Google Scholar

[22] V. Sharma, U. Prakash, B.M Kumar, Surface composites by friction stir processing: A review, J. Mater. Process. Technol. 224 (2015) 117-134.

DOI: 10.1016/j.jmatprotec.2015.04.019

Google Scholar

[23] H. Das, M. Mondal, S.T. Hong, D.M. Chun, H.N. Han, Joining and fabrication of metal matrix composites by friction stir welding/processing, Int. J. Precis. Eng. Manuf. - Green Technol. 5 (2018) pp.151-172.

DOI: 10.1007/s40684-018-0016-7

Google Scholar

[24] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R Rep. 50 (2005) 1-78.

Google Scholar

[25] O.M. Ikumapayi, E.T. Akinlabi, J.D. Majumdar, Review on thermal, thermo-mechanical and thermal stress distribution during friction stir welding, Int. J. Mech. Eng. Technol 9 (2018) 534-548.

Google Scholar

[26] K.O. Sanusi, E.T. Akinlabi, Friction-stir processing of a composite aluminium alloy (AA 1050) reinforced with titanium carbide powder, Mater. Technol. 51 (2017) 427-435.

DOI: 10.17222/mit.2016.021

Google Scholar

[27] N. Naghshehkesh, S. Mousavi, F. Karimzadeh, A. Ashrafi, M. Nosko, V. Trembošová, B. Sadeghi, Effect of graphene oxide and friction stir processing on microstructure and mechanical properties of Al5083 matrix composite. Materials Research Express. 6 (2019), 106566.

DOI: 10.1088/2053-1591/ab3a6f

Google Scholar

[28] F. Khodabakhshi, M. Nosko, A.P. Gerlich, Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al-Mg alloy during friction-stir processing. Surface and Coatings Technology, 335 (2018), 288-305.

DOI: 10.1016/j.surfcoat.2017.12.045

Google Scholar

[29] V.K.S. Jain, P.M. Muhammed, S. Muthukumaran, S.P. Babu, Microstructure, mechanical and sliding wear behavior of AA5083–B4C/SiC/TiC surface composites fabricated using friction stir processing, Trans. Indian Inst. Met. 71(2018) 1519-1529.

DOI: 10.1007/s12666-018-1287-y

Google Scholar

[30] F. Ostovan, S. Amanollah, M. Toozandehjani, E. Shafiei, Fabrication of Al5083 surface hybrid nanocomposite reinforced by CNTs and Al2O3 nanoparticles using friction stir processing. Journal of Composite Materials. 54 (2020), 1107-1117

DOI: 10.1177/0021998319874849

Google Scholar

[31] S. Joyson Abraham, S. Chandra Rao Madane, I.A. Dinaharan, L. John Baruch, Development of quartz particulate reinforced AA6063 aluminium matrix composites via friction stir processing. J. Asian Ceram. Soc. 4 (2016) 381-389.

DOI: 10.1016/j.jascer.2016.08.001

Google Scholar

[32] I. Dinaharan, Influence of ceramic particulate type on microstructure and tensile strength of aluminium matrix composites produced using friction stir processing. Journal of Asian Ceramic Societies, 4 (2016), 209-218.

DOI: 10.1016/j.jascer.2016.04.002

Google Scholar

[33] E.M. Zayed, N.S.M El-Tayeb, M.M.Z. Ahmed, R.M. Rashad, Development and characterization of AA5083 reinforced with SiC and Al 2 O 3 particles by friction stir processing. In Engineering design applications. Springer, Cham. 2019, 11-26

DOI: 10.1007/978-3-319-79005-3_2

Google Scholar

[34] M. Khan, A. Rehman, T. Aziz, M. Shahzad, K. Naveed, T. Subhani, Effect of inter-cavity spacing in friction stir processed Al 5083 composites containing carbon nanotubes and boron carbide particles J. Mater. Process. Technol. 253 (2018) 72-85.

DOI: 10.1016/j.jmatprotec.2017.11.002

Google Scholar

[35] N. Yuvaraj, S. Aravindan, Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization, J. Mater. Res. Technol. 4 (2015)398-410.

DOI: 10.1016/j.jmrt.2015.02.006

Google Scholar

[36] S.A. Hosseini, K. Ranjbar, R. Dehmolaei, A.R. Amirani, Fabrication of Al5083 surface composites reinforced by CNTs and cerium oxide nanoparticles via friction stir processing. Journal of Alloys and Compounds, 622 (2015) pp.725-733.

DOI: 10.1016/j.jallcom.2014.10.158

Google Scholar

[37] G.S. Raheja, S. Singh, C. Prakash. Development of hybrid Gr/SiC reinforced AMCs through friction stir processing. Materials Today: Proceedings. 2020.

DOI: 10.1016/j.matpr.2020.05.721

Google Scholar

[38] S. Bharti, N.D. Ghetiya, V. Dutta, Investigating microhardness and wear behavior of Al5052/ZrO2 surface composite produced by friction stir processing. Materials Today: Proceedings. 44 (2021), 52-57.

DOI: 10.1016/j.matpr.2020.06.318

Google Scholar

[39] F. Khodabakhshi, M. Nosko, A.P. Gerlich, Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al-Mg alloy during friction-stir processing, Surf. Coat. Technol. 335 (2018) 288-305.

DOI: 10.1016/j.surfcoat.2017.12.045

Google Scholar

[40] C.D. Marini, N. Fatchurrohman, Z. Zulkfli, Investigation of wear performance of friction stir processed aluminium metal matrix composites. Materials Today: Proceedings, 46 (2021), 1740-1744.

DOI: 10.1016/j.matpr.2020.07.568

Google Scholar

[41] A. Sharma, D. Narsimhachary, V.M. Sharma, B. Sahoo, J. Paul, Surface modification of Al6061-SiC surface composite through impregnation of graphene, graphite & carbon nanotubes via FSP: a tribological study. Surface and Coatings Technology, 368 (2019), 175-191.

DOI: 10.1016/j.surfcoat.2019.04.001

Google Scholar

[42] M. Narimani, B. Lotfi, Z. Sadeghian, Evaluation of the microstructure and wear behaviour of AA6063-B4C/TiB2 mono and hybrid composite layers produced by friction stir processing. Surface and Coatings Technology, 285 (2016), 1-10.

DOI: 10.1016/j.surfcoat.2015.11.015

Google Scholar

[43] R. Maurya, B. Kumar, S. Ariharan, J. Ramkumar, K. and Balani, Effect of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy. Materials & Design, 98 (2016), 155-166.

DOI: 10.1016/j.matdes.2016.03.021

Google Scholar