Influence of Erbium and Thermal Treatments on the Microstructure and Hardness of Al-Mg-Si Alloy

Article Preview

Abstract:

The influence of Erbium (Er) addition and thermal treatments on the microstructure and hardness of Al-0.5 wt.%Mg-1.0 wt.%Si alloy has been studied. Chemical composition of the alloys was measured by optical emission spectrometry (OES) and x-ray fluorescence (XRF). Microstructural evolution of as-cast, solution-treated, and aged samples were characterized by scanning electron microscope (SEM). The phase identification and elemental distribution were obtained from energy dispersive spectroscopy (EDS). From the microstructure, it was confirmed that solutionization at 570 ͦ C for 15 hours dissolved the Mg2Si and Er-rich intermetallics. However, some Fe-rich intermetallics remained after the solution heat treatment. Er addition had a role on the modification of β-AlFeSi and improved the hardness. Er-modified Al-Mg-Si alloy gave a significant improvement in mechanical properties. Therefore, Er is one of the candidate elements that could provide an opportunity for a high-strength Al-Mg-Si alloy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1087)

Pages:

103-108

Citation:

Online since:

May 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Mukhopadhyay, Alloy designation, processing, and use of AA6XXX series aluminium alloys, ISRN Metallurgy. 2012 (2012) 165082.

DOI: 10.5402/2012/165082

Google Scholar

[2] J. Sun, Research on situation and application prospect of automotive body sheets Al-Mg-Si based (6000series) alloy, IOP Conf. Ser.: Mater. Sci. 452 (2018) 022082.

DOI: 10.1088/1757-899x/452/2/022082

Google Scholar

[3] Z. Gao, H. Li, Y. Lai, Y. Ou, D. Li, Effects of minor Zr and Er on microstructure and mechanical properties of pure aluminum, Mater. Sci. Eng. A 580 (2013) 92-98.

DOI: 10.1016/j.msea.2013.05.035

Google Scholar

[4] P. Pandee, U. Patakham, C. Limmaneevichitr, Microstructural evolution and mechanical properties of Al-7Si-0.3Mg alloys with erbium additions, J. Alloy. Compd. 728 (2017) 844-853.

DOI: 10.1016/j.jallcom.2017.09.054

Google Scholar

[5] S. Wen, Z. Xing, H. Huang, B. Li, W. Wang, Z. Nie, The effect of erbium on the microstructure and mechanical properties of Al–Mg–Mn–Zr alloy, Mater. Sci. Eng. A 516(1) (2009) 42-49.

DOI: 10.1016/j.msea.2009.02.045

Google Scholar

[6] M. Colombo, E. Gariboldi, A. Morri, Er addition to Al-Si-Mg-based casting alloy: Effects on microstructure, room and high temperature mechanical properties. Journal of Alloys and Compounds, J. Alloy. Compd. 708 (2017) 1234-1244.

DOI: 10.1016/j.jallcom.2017.03.076

Google Scholar

[7] K. Wang, J. Xiang, R. Zhao, J. Bi, X. Wu, M. Chen, Microstructure refinement and enhanced tensile properties of Al-11Mg2Si alloy modified by erbium, J. Alloy. Compd. 860 (2021) 158421.

DOI: 10.1016/j.jallcom.2020.158421

Google Scholar

[8] Z. R. Nie, B. L. Li, W. Wang, T. N. Jin, H. Huang, H. M. Li, J. X. Zou, T. Y. Zuo, Study on the erbium strengthened aluminum alloy, Mater. Sci. Forum 546-549 (2007) 623-628.

DOI: 10.4028/www.scientific.net/msf.546-549.623

Google Scholar

[9] Y. He, H. Xi, W. Q. Ming, Q. Q. Shao, R. Shen, Y. Lai, Thermal stability and precipitate microstructures of Al−Si−Mg−Er alloy, Trans. Nonferrous Met. Soc. China 31(1) (2021) 1-10.

DOI: 10.1016/s1003-6326(20)65474-7

Google Scholar

[10] H. Okamoto, Al-Er (aluminum-erbium), J. Phase Equilib. Diffus. 32(3) (2011) 261-262.

DOI: 10.1007/s11669-011-9877-y

Google Scholar

[11] L. Jin, Y.B. Kang, P. Chartrand, C.D. Fuerst, Thermodynamic evaluation and optimization of Al–Gd, Al–Tb, Al–Dy, Al–Ho and Al–Er systems using a modified quasichemical model for the liquid, Calphad-Comput. Coupling Ph. Diagrams Thermochem. 34(4) (2010) 456-466.

DOI: 10.1016/j.calphad.2010.08.004

Google Scholar

[12] M. Hosseinifar, D.V. Malakhov, The sequence of intermetallics formation during the solidification of an Al-Mg-Si alloy containing La, Metall. Mater. Sci. Eng. A 42(3) (2011) 825-833.

DOI: 10.1007/s11661-010-0453-6

Google Scholar

[13] K. Uttarasak, W. Chongchitnan, K. Matsuda, T. Chairuangsri, J. Kajornchaiyakul, C. Banjongprasert, Evolution of Fe-containing intermetallic phases and abnormal grain growth in 6063 aluminum alloy during homogenization, Results Phys. 15 (2019) 102535.

DOI: 10.1016/j.rinp.2019.102535

Google Scholar

[14] Z.M. Shi, Q. Wang, G. Zhao, R.Y. Zhang, Effects of erbium modification on the microstructure and mechanical properties of A356 aluminum alloys, Mater. Sci. Eng. A 626(1) (2015) 102-107.

DOI: 10.1016/j.msea.2014.12.062

Google Scholar

[15] C. Xu, W. Xiao, S. Hanada, H. Yamagata, C. Ma, The effect of scandium addition on microstructure and mechanical properties of Al-Si-Mg alloy: A multi-refinement modifier, Mater. Charact. 110 (2015) 160-169.

DOI: 10.1016/j.matchar.2015.10.030

Google Scholar

[16] K. B. S. Couto, S. R. Claves, W. H. Van Geertruyden, W. Z. Misiolek, M. Goncalves, Effects of homogenisation treatment on microstructure and hot ductility of aluminium alloy 6063, Mater. Sci. Technol. 21(2) (2005) 263-268.

DOI: 10.1179/174328405x18584

Google Scholar

[17] X. Wu, H. Zhang, Z. Ma, T. Tao, J. Gui, W. Song, B. Yang, H. Zhang, Interactions between Fe-rich intermetallics and Mg-Si phase in Al-7Si-xMg alloys, J. Alloy. Compd. 786 (2019) 205-214.

DOI: 10.1016/j.jallcom.2019.01.352

Google Scholar

[18] S.S. Dong, B.L. Li, W.J. Lv, P. Qi, Z.R. Nie, Effect of homogenization temperature on the microstructure and property of 6061 aluminum alloy with erbium, Mater. Sci. Forum 898 (2017) 47-52.

DOI: 10.4028/www.scientific.net/msf.898.47

Google Scholar