Material Development for Additive Manufacturing: Compressive Loading Behavior of SLA 3D-Printed Thermosets with Nanosilica Powders

Article Preview

Abstract:

3D printing is now being used in many different applications. This adoption of 3D printing in these applications is accelerated by the development of new materials such as high performance polymers and nanocomposites. In this study, a commercially-available stereolithographic (SLA) resin has been reinforced with 0%, 0.1%, 0.3% and 0.5% nanosilica powder. The resulting mixture has been 3D-printed using a stereolithography 3d printer. The 3D-printed composites have been post-cured in a UV chamber and the mechanical properties have been assessed under compressive loading using a universal testing machine (ASTM-D695). The results show that adding nanosilica powder to the resin would increase the compressive strength of the resin, and that the highest compressive strength could be observed when 0.1% nanosilica poweder was added to the resin.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1087)

Pages:

137-142

Citation:

Online since:

May 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. N. M. Delda, R. B. Basuel, R. P. Hacla, D. W. C. Martinez, J.-J. Cabibihan, J. R. C. Dizon, 3D Printing Polymeric Materials for Robots with Embedded Systems, Technologies. (2021) 1–26.

DOI: 10.3390/technologies9040082

Google Scholar

[2] G. S. Robles, R. N. M. Delda, R. Lui, B. Rosario, M. T. Espino, J. R. C. Dizon, Dimensional Accuracy of 3D - Printed Acrylonitrile Butadiene Styrene: Effect of Size , Layer Thickness and Infill Density. 913 (2022) 17–25.

DOI: 10.4028/p-nxviqm

Google Scholar

[3] R. N. M. Delda, B. J. Tuazon, J. R. C. Dizon, Assessment of Interfacial Adhesion of Adhesively Bonded 3D-Printed Thermoplastics, Mater. Sci. Forum. 1005 (2020) 157–165.

DOI: 10.4028/www.scientific.net/msf.1005.157

Google Scholar

[4] J. R. Diego, D. W. C. Martinez, G. S. Robles, J. R. C. Dizon, Development of Smartphone-Controlled Hand and Arm Exoskeleton for Persons with Disability," Open Eng., 11,1 (2021) 161–170.

DOI: 10.1515/eng-2021-0016

Google Scholar

[5] J. R. C. Dizon, J. L. B. Crisostomo, 3D Printing Applications in Agriculture, Food Processing, and Environmental Protection and Monitoring, Key Eng. Mater. 913 (2022) 17–25.

Google Scholar

[6] R. C. Advincula et al., Additive Manufacturing for COVID-19: Devices, Materials, Prospects and Challenges, MRS Commun. (2020) 1–15.

DOI: 10.1557/mrc.2020.57

Google Scholar

[7] L. D. Tijing, J. R. C. Dizon, I. Ibrahim, A. R. N. Nisay, H. K. Shon, R. C. Advincula, 3D printing for membrane separation, desalination and water treatment, Appl. Mater. Today. 18 (2020).

DOI: 10.1016/j.apmt.2019.100486

Google Scholar

[8] A. H. Espera, J. R. C. Dizon, Q. Chen, R. C. Advincula, "3D-printing and advanced manufacturing for electronics, Prog. Addit. Manuf., . 4 (2019) 245-267.

DOI: 10.1007/s40964-019-00077-7

Google Scholar

[9] B. J. Tuazon, M. T. Espino, J. R. C. Dizon, Investigation on the Effects of Acetone Vapor-Polishing to Fracture Behavior of ABS Printed Materials at Different Operating Temperature, Materials Science Forum. 1005 (2020) 141–149.

DOI: 10.4028/www.scientific.net/msf.1005.141

Google Scholar

[10] L. D. Tijing, J. R. C. Dizon, G. G. Cruz Jr., 3D-Printed Absorbers for Solar-Driven Interfacial Water Evaporation: A Mini-Review, Adv. Sustain. Sci. Eng. Technol. 3, 1 (2021) 0210103.

DOI: 10.26877/asset.v3i1.8367

Google Scholar

[11] V. Hughes, I. Tabiai, K. Chizari, D. Therriault, 3D Printable Conductive Nanocomposites of PLA and Multi-Walled Carbon Nanotubes, Mater. Matter-Aldrich Chem. Co.11(2016), 61–63.

Google Scholar

[12] S. Dul, L. Fambri, A. Pegoretti, Development of new nanocomposites for 3D printing applications. In Woodhead Publishing Series in Composites Science and Engineering, Structure and Properties of Additive Manufactured Polymer Components, Woodhead Publishing, Elsevier Inc., 2020.

DOI: 10.1016/b978-0-12-819535-2.00002-8

Google Scholar

[13] S. Coiai, E. Passaglia, A. Pucci, G. Ruggeri, Nanocomposites based on thermoplastic polymers and functional nanofiller for sensor applications, Materials (Basel). 8, 6 (2015) 3377–3427.

DOI: 10.3390/ma8063377

Google Scholar

[14] T. A. Campbell, O. S. Ivanova, 3D printing of multifunctional nanocomposites, Nano Today. 8, 2 (2013) 119–120.

DOI: 10.1016/j.nantod.2012.12.002

Google Scholar

[15] A. D. Valino, J. R. C. Dizon, A. H. Espera, Q. Chen, J. Messman, R. C. Advincula, Advances in 3D printing of thermoplastic polymer composites and nanocomposites, Prog. Polym. Sci. 98 (2019).

DOI: 10.1016/j.progpolymsci.2019.101162

Google Scholar

[16] G. Mago, S. C. Jana, S. S. Ray, T. McNally, Polymer nanocomposite processing, characterization, and applications 2012, J. Nanomater. 2012 (2012).

DOI: 10.1155/2012/924849

Google Scholar

[17] B. Wang, Z. Zhang, Z. Pei, J. Qiu, S. Wang, Current progress on the 3D printing of thermosets, Adv. Compos. Hybrid Mater., 3, 4, (2020) 462–472.

DOI: 10.1007/s42114-020-00183-z

Google Scholar

[18] J. Bhadra, A. Alkareem, N. Al-Thani, A review of advances in the preparation and application of polyaniline based thermoset blends and composites, J. Polym. Res. 27, 5 (2020).

DOI: 10.1007/s10965-020-02052-1

Google Scholar

[19] A. K. T. Lau, D. Bhattacharyya, C. H. Y. Ling, Nanocomposites for engineering applications, J. Nanomater. 2009 (2009) 140586, 2009.

DOI: 10.1155/2009/140586

Google Scholar

[20] N. S. Hmeidat, J. W. Kemp, B. G. Compton, High-strength epoxy nanocomposites for 3D printing, Compos. Sci. Technol. 160 (2018) 9–20.

DOI: 10.1016/j.compscitech.2018.03.008

Google Scholar

[21] J. Z. Manapat, Q. Chen, P. Ye, R. C. Advincula, 3D Printing of Polymer Nanocomposites via Stereolithography, Macromol. Mater. Eng. 302, 9 (2017) 1–13, 2017.

DOI: 10.1002/mame.201600553

Google Scholar

[22] M. Sajjad et al., Study of the effect of the concentration, size and surface chemistry of zirconia and silica nanoparticle fillers within an epoxy resin on the bulk properties of the resulting nanocomposites, Polym. Int. 61, 2 (2012) 274–285.

DOI: 10.1002/pi.3183

Google Scholar

[23] Necati Ataberk, The effect of Cu nanoparticle adding on to epoxy-based adhesive and adhesion properties, Sci. Rep. 10, 1 (2020) 1–11.

DOI: 10.1038/s41598-020-68162-4

Google Scholar

[24] F. Bensadoun, N. Kchit, C. Billotte, F. Trochu, E. Ruiz, A comparative study of dispersion techniques for nanocomposite made with nanoclays and an unsaturated polyester resin, J. Nanomater. 2011 (2011).

DOI: 10.1155/2011/406087

Google Scholar

[25] Q. Chen, J. D. Mangadlao, J. Wallat, A. De Leon, J. K. Pokorski, R. C. Advincula, 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: Anisotropic properties, ACS Appl. Mater. Interfaces. 9,4, (2017) 4015–4023.

DOI: 10.1021/acsami.6b11793

Google Scholar

[26] K. Müller et al., "Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields," Nanomaterials. 7, 4 (2017).

DOI: 10.3390/nano7040074

Google Scholar

[27] J. R. C. Dizon, Q. Chen, A. D. Valino, R. C. Advincula, Thermo-mechanical and swelling properties of three-dimensional-printed poly (ethylene glycol) diacrylate/silica nanocomposites, MRS Commun. 9, 1, (2019) 209–217.

DOI: 10.1557/mrc.2018.188

Google Scholar

[28] M. Linec and B. Mušič, The effects of silica-based fillers on the properties of epoxy molding compounds, Materials (Basel).12, 11, (2019) 1–11.

DOI: 10.3390/ma12111811

Google Scholar

[29] J. R. C. Dizon, C. C. L. Gache, H. M. S. Cascolan, L. T. Cancino, R. C. Advincula, Post-processing of 3D-Printed Polymers, Technologies, 9,3 (2021).

DOI: 10.3390/technologies9030061

Google Scholar

[30] G. S. Robles, R. N. M. Delda, R. L. B. Del Rosario, M. T. Espino, J. R. C. Dizon, Dimensional Accuracy of 3D - Printed Acrylonitrile Butadiene Styrene: Effect of Size, Layer Thickness, and Infill Density, 913 (2022), 17-25.

DOI: 10.4028/p-nxviqm

Google Scholar

[31] J. R. C. Dizon, A. H. Espera, Q. Chen, R. C. Advincula, Mechanical Characterization of 3D-printed Polymers, 20 (2018) 44-67.

DOI: 10.1016/j.addma.2017.12.002

Google Scholar