Lap Shear Strength Assessment of Acetone Welded 3D-Printed ABS Polymer

Article Preview

Abstract:

Fused Deposition Modeling (FDM) is one of the most common polymer 3D printing technologies used in many applications today. However, limited volume capacity for 3D printing large parts or components is the usual downside of this technology, especially desktop 3D printers. Hence, to offset this limitation, the 3D-printed parts are often designed in multiple pieces and assembled after printing, which requires post-processing called cold welding. Such welds are also quite strong but not as strong as a single-piece print. Therefore, finding suitable parameters or settings that can provide substantial strength for cold-welded 3D-printed parts will be beneficial. This study aims to determine the failing behavior and shear strength of ABS FDM 3D-printed single-lap joint using ABS glue as adhesive. Specimens were printed with varying raster angles (+45o/-45o and 0o/90o) and layer thickness (290 μm, 190 μm, and 90 μm) to investigate the effects on the adhesion or shear strength and failure mode of the acetone welded 3D-printed joints. Results show that raster angle and layer thickness significantly affected the shear strength of acetone welded materials. Single-lap joint test sample printed with +45o/-45o raster angle reveals higher shear strength than specimens printed with 0o/90o raster angle. Results also indicated that the gaps between the raster and voids between adjacent filaments of 3D-printed parts affects the adhesion and failure mode of a single-lap joint.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1087)

Pages:

149-154

Citation:

Online since:

May 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. C. Advincula, J. R. C. Dizon, E. B. Caldona, R. A. Viers, F. D. C. Siacor, R. D. Maalihan & A. H. Espera Jr., On the progress of 3D-printed hydrogels for tissue engineering, MRS Communications (2021).

DOI: 10.1557/s43579-021-00069-1

Google Scholar

[2] M. Espino, B. Tuazon, G. Robles, J. Dizon, Application of Taguchi Methodology in Evaluating the Rockwell Hardness of SLA 3D Printed Polymers, Materials Science Forum, ISSN: 1662-9752, Vol. 1005 (2020), pp.166-173

DOI: 10.4028/www.scientific.net/msf.1005.166

Google Scholar

[3] J.R.C. Dizon, A.D. Valino, L.R. Souza, A.H. Espera, Jr., Q.Chen, R.C. Advincula, Three-Dimensional-Printed Molds and Materials for Injection Molding and Rapid Tooling Applications, MRS Communications, Vol 9, 2019, pp.1267-1283.

DOI: 10.1557/mrc.2019.147

Google Scholar

[4] B. J. Tuazon, N. A. V. Custodio, R. B. Basuel, L. A. Delos Reyes, & J. R. C. Dizon, 3D Printing Technology and Materials for Automotive Application: A Mini-Review. In Key Engineering Materials, Vol. 913, 2022, p.3–16. Trans Tech Publications, Ltd.

DOI: 10.4028/p-26o076

Google Scholar

[5] S. Crump, Fast, Precise, Safe Prototype with FDM, ASME PED, vol. 50, 1991, p.53–60.

Google Scholar

[6] B. Tuazon, M. Espino, J. Dizon, Investigation on the Effects of Acetone Vapor-Polishing to Fracture Behavior of ABS Printed Materials at Different Operating Temperature, Materials Science Forum, ISSN: 1662-9752, Vol. 1005 (2020), pp.141-149

DOI: 10.4028/www.scientific.net/msf.1005.141

Google Scholar

[7] J. C. Dizon, C. C. L. Gache, H. M. S. Cascolan, L. T. Cancino, R. C. Advincula, Post processing of 3D-printed Polymers, Technologies, 2021, 9(3):61.

DOI: 10.3390/technologies9030061

Google Scholar

[8] Information on https://www.hubs.com/knowledge-base/what-is-fdm-3d-printing/#what-are-the-disadvantages-of-fdm-3d-printing

Google Scholar

[9] Jeevi G., Nayak S.K., Abdul Kader M., Review on adhesive joints and their application in hybrid composite structures, J. Adhes. Sci. Technol., 33 (2019), p.1497

DOI: 10.1080/01694243.2018.1543528

Google Scholar

[10] Bak K.M., Kalaichelvan K., Vijayaraghavan G.K., Dinesh M., Arumugam V., Study on the effect of adhesive thickness of single lap joints using acoustic emission and FEA, Insight, Non-Destr. Test. Cond. Monit., 55 (2013), pp.35-41

DOI: 10.1784/insi.2012.55.1.35

Google Scholar

[11] Information on https://formlabs.com/asia/blog/how-to-create-models-larger-than-your-3d-printers-build-volume/

Google Scholar

[12] R. N. M. Delda, B. J. Tuazon, J. R. C. Dizon, Assessment of Interfacial Adhesion of Adhesively Bonded 3D - Printed Thermoplastics, Materials Science Forum, ISSN: 1662-9752, Vol. 1005 (2020), pp.157-165

DOI: 10.4028/www.scientific.net/msf.1005.157

Google Scholar

[13] Ramalho L.D.C., Campilho R.D.S.G., Belinha J., da Silva L.F.M. Static strength prediction of adhesive joints: A review Int. J. Adhes. Adhes., 96 (2020), Article 102451

DOI: 10.1016/j.ijadhadh.2019.102451

Google Scholar

[14] Shang X., Marques E.A.S., Machado J.J.M., Carbas R.J.C., Jiang D., da Silva L.F.M. Review on techniques to improve the strength of adhesive joints with composite adherends Composites B, 177 (2019), Article 107363

DOI: 10.1016/j.compositesb.2019.107363

Google Scholar

[15] Abdel Wahab M.M., Fatigue in adhesively bonded joints: A review. Int. Sch. Res. Not., (2012)

Google Scholar

[16] Budhe S., Banea M.D., De Barros S., Da Silva L.F.M., An updated review of adhesively bonded joints in composite materials, Int. J. Adhes. Adhes., 72 (2017), pp.30-42

DOI: 10.1016/j.ijadhadh.2016.10.010

Google Scholar

[17] Information on https://www.merriam-webster.com/dictionary/adherend

Google Scholar

[18] Harris CG, Jursik NJS, Rochefort WE and Walker TW, Additive Manufacturing with Soft TPU – Adhesion Strength in Multimaterial Flexible Joints. Front. Mech. Eng. (2019) 5:37.

DOI: 10.3389/fmech.2019.00037

Google Scholar

[19] Spaggiari A., Denti F. Mechanical strength of adhesively bonded joints using polymeric additive manufacturing Proc. Inst. Mech. Eng. C (2019), Article 0954406219850221

Google Scholar

[20] Cavalcanti D.K.K., Banea M.D., Queiroz H.F.M., Mechanical characterization of bonded joints made of additive manufactured adherends, Ann. "Dunarea de Jos" Univ. Galati. Fasc. XII Weld. Equip. Technol., 30 (2019), pp.27-33

DOI: 10.35219/awet.2019.04

Google Scholar

[21] M. R. Khosravani, P. Soltani, K. Weinberg, T. Reinicke, Structural integrity of adhesively bonded 3D-printed joints, Polymer Testing, Vol. 100, 2021, 107262, ISSN 0142-9418

DOI: 10.1016/j.polymertesting.2021.107262

Google Scholar

[22] V. Kovan, G. Altan and E. S. Topal, "Effect of layer thickness and print orientation on strength of 3D printed and adhesively bonded single lap joints", Journal of Mechanical Science and Technology 31 (5) (2017) 2197-2201.

DOI: 10.1007/s12206-017-0415-7

Google Scholar

[23] M. Hafsa, M. Ibrahim, Md. Wahab, Saidin, and M. Zahid, Evaluation of FDM pattern with ABS and PLA material. Applied Mechanics and Materials (2013), 465-466. 55-59.

DOI: 10.4028/www.scientific.net/amm.465-466.55

Google Scholar

[24] ASTM D3163-01: Standard Test Methods for Determining the Strength of Adhesively Bonded Rigid Plastic Lap-Shear Joints in Shear by Tension Loading. ASTM.

DOI: 10.1520/d3163-01r08

Google Scholar

[25] Information on https://www.matterhackers.com/news/how-to-make-abs-juice-glue-and-slurry

Google Scholar

[26] S. Ebnesajjad, Theories of Adhesion in Surface Treatment of Materials for Adhesive Bonding (Second Edition), (2014)

Google Scholar

[27] Omairey, S., Jayasree, N. & Kazilas, M. Defects and uncertainties of adhesively bonded composite joints. SN Appl. Sci. 3, 769 (2021)

DOI: 10.1007/s42452-021-04753-8

Google Scholar

[28] Information on https://www.doitpoms.ac.uk/tlplib/add_manuf/fdm.php

Google Scholar