Numerical Modelling of Thermo-Mechanical Processes in Steels - An Overview and Recent Progress

Article Preview

Abstract:

Numerical modelling tools provide valuable means to quantitatively control thermomechanical processing. Several modelling tools have been applied and developed at University of Oulu during previous years, such as finite element models for hot rolling, recrystallization models, heat transfer and conduction model, coupled with phase transformation, as well as cellular automata and phase field models for simulating phase transformation during cooling. This article describes the overall development and recent progress of the developed numerical modeling tools.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1093)

Pages:

13-20

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Uranga, M. Rodríguez-Ibabe J. Thermomechanical Processing of Steels. Metals. (2020) 10(5): 641

DOI: 10.3390/met10050641

Google Scholar

[2] M. Pernach., K. Bzowski, & M. Pietrzyk . Numerical modeling of phase transformation in dual phase (DP) steel after hot rolling and laminar cooling. International Journal for Multiscale Computational Engineering, 12(5) (2014).

DOI: 10.1615/intjmultcompeng.2014010450

Google Scholar

[3] D. Szeliga, K. Bzowski, L. Rauch, R. Kuziak, & M. Pietrzyk, Mean field and full field modelling of microstructure evolution and phase transformations during hot forming and cooling of low carbon steels. Computer Methods in Materials Science, (2020) 20(3), 121-132

DOI: 10.7494/cmms.2020.3.0727

Google Scholar

[4] D. Szeliga, N. Czyżewska , K. Klimczak, J. Kusiak, R. Kuziak, P. Morkisz, P. Oprocha, M. Pietrzyk, L. Poloczek & P. Przybyłowicz, Stochastic model describing evolution of microstructural parameters during hot rolling of steel plates and strips. Archives of Civil and Mechanical Engineering, (2022) 22(3), 1-17.

DOI: 10.1007/s43452-022-00460-2

Google Scholar

[5] M. Sitko, K. Banaś, & L. Madej, Scaling scientific cellular automata microstructure evolution model of static recrystallization toward practical industrial calculations. Materials, (2021), 14(15), 4082.

DOI: 10.3390/ma14154082

Google Scholar

[6] L. Madej, & M. Sitko, Computationally Efficient Cellular Automata‐Based Full‐Field Models of Static Recrystallization: A Perspective Review. Steel research international, (2022), 2200657.

DOI: 10.1002/srin.202200657

Google Scholar

[7] K. Bzowski, Ł. Rauch, M. Pietrzyk, M. Kwiecień, & K. Muszka, Numerical Modeling of Phase Transformations in Dual-Phase Steels Using Level Set and SSRVE Approaches. Materials, (2021), 14(18), 5363.

DOI: 10.3390/ma14185363

Google Scholar

[8] I. Milenin, M. Pernach, & M. Pietrzyk, Application of the control theory for modelling austenite-ferrite phase transformation in steels. Computer Methods in Materials Science, (2015), 15(2), 327-335.

Google Scholar

[9] C. A. Felker, J. G. Speer, E. De Moor, K. O. Findley, Hot Strip Mill Processing Simulations on a Ti-Mo Microalloyed Steel Using Hot Torsion Testing. Metals, (2020), 10(3):334

DOI: 10.3390/met10030334

Google Scholar

[10] R. A. Stewart, J. G. Speer, B. G. Thomas, E. De Moor, & A. J. Clarke, Quenching and partitioning of plate steels: Partitioning design methodology. Metallurgical and Materials Transactions A, (2019), 50(10), 4701-4713.

DOI: 10.1007/s11661-019-05337-3

Google Scholar

[11] Q. Wang, K. Peng, J. Dong, Modeling and Monitoring for Laminar Cooling Process of Hot Steel Strip Rolling with Time–Space Nature. Processes, (2022). 10(3):589. https://doi.org/10.3390/ pr10030589

DOI: 10.3390/pr10030589

Google Scholar

[12] S. Wang, Z. Li, Z. Defeng, Z. Donghai, Coupled model of temperature and phase transformation of hot rolling low carbon steel during cooling process J. Phys.: Conf. Ser., (2019), 1168 052047

DOI: 10.1088/1742-6596/1168/5/052047

Google Scholar

[13] A. Pesin, P. Tandon, D. O. Pustovoytov, A. Korchunov, I. Pesin, A. Dubey,. Numerical Modelling and Development of New Technical Solutions in Metallurgy and Material Processing. In Solid State Phenomena, (2020), (Vol. 304, pp.113-119). Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/ssp.304.113

Google Scholar

[14] A. dos Santos, N. Ignácio, M. Fernandes, D. Baía, F. Moreira, W. da Silva Assis, P. Rios, Computational modeling of a 3D matrix of duplex stainless steel and its ultimate strength in function of the sigma phase evolution, Journal of Materials Research and Technology, (2021), Vol. 15, pp.2625-2632, ISSN 2238-7854.

DOI: 10.1016/j.jmrt.2021.09.051

Google Scholar

[15] SIMP – System Integrated Metals Processing, DIMECC Oy, ISBN: 978952238193-4 (2017)

Google Scholar

[16] J. Ilmola, A. Pohjonen, O. Seppälä, O. Leinonen, J. Larkiola, J. Jokisaari, E. Putaansuu, P. Lehtikangas, Coupled multiscale and multiphysical analysis of hot steel strip mill and microstructure formation during water cooling, Procedia Manuf., (2018).

DOI: 10.1016/j.promfg.2018.07.171

Google Scholar

[17] J. Ilmola, O. Seppälä, A. Pohjonen, J. Larkiola, Virtual rolling automation and setup calculations for six stands FEM finishing mill, IOP Conference Series Materials Science and Engineering, (2022) 1270(1):012060

DOI: 10.1088/1757-899X/1270/1/012060

Google Scholar

[18] O. Seppälä, J. Ilmola and J. Larkiola, Industrial FE-Simulation of Roughing Using an Automatic Solver Shifting Technique, Materials Science Forum, (2021), 1016, 1312–1317

DOI: 10.4028/www.scientific.net/msf.1016.1312

Google Scholar

[19] A. Pohjonen, P. Kaikkonen, O. Seppälä, J. Ilmola, V. Javaheri, T. Manninen, & M. Somani, Numerical and experimental study on thermo-mechanical processing of medium-carbon steels at low temperatures for achieving ultrafine-structured bainite. Materialia, (2021), 18, 101150.

DOI: 10.1016/j.mtla.2021.101150

Google Scholar

[20] O. Seppälä, A. Pohjonen, J. Ilmola, A. Jokiranta, A. Kaijalainen, M. Somani, & J. Larkiola, Simulation of deformation and static recrystallization in the stress relaxation test. In Journal of Physics: Conference Series, (2019) Vol. 1270, No. 1, p.012027. IOP Publishing.

DOI: 10.1088/1742-6596/1270/1/012027

Google Scholar

[21] A. Pohjonen, O. Seppälä, A. Jokiranta, A. Kaijalainen, M. Somani, D. Porter, J. Larkiola, J. Kömi. Determination of static recrystallization and recovery parameters for steel by fitting model to stress relaxation data. In Journal of Physics: Conference Series, (2019), Vol. 1270, No. 1, p.012013. IOP Publishing.

DOI: 10.1088/1742-6596/1270/1/012013

Google Scholar

[22] M. Ali, O. Seppälä, T. Fabritius, J. Kömi, Microstructure evolution and static recrystallization kinetics in hot-deformed austenite of coarse-grained Mo-free and Mo containing low-carbon CrNiMnB ultrahigh-strength steels, Materials Tocay Communications (2022).

DOI: 10.1016/j.mtcomm.2022.104676

Google Scholar

[23] L. P. Karjalainen, J. Perttula, Characteristics of static and metadynamic recrystallization and strain accumulation in hot-deformed austenite as revealed by the stress relaxation method, ISIJ Int., (1996), 36, 729–736.

DOI: 10.2355/isijinternational.36.729

Google Scholar

[24] O. Leinonen, J. Ilmola, O. Seppälä, A. Pohjonen, J. Paavola, S. Koskenniska, & J. Larkiola., Experimental determination of heat transfer coefficients in roll bite and air cooling for computer simulations of 1100 MPa carbon steel rolling. In AIP Conference Proceedings, (2018), Vol. 1960, No. 1, p.170009. AIP Publishing LLC.

DOI: 10.1063/1.5035066

Google Scholar

[25] S. Uusikallio, S. Koskenniska, J. Ilmola, J. Paavola, A. Pohjonen, Larkiola, J., & Kömi, J. Determination of effective heat transfer coefficient for water spray cooling of steel. Procedia Manufacturing, (2020), 50, 488-491.

DOI: 10.1016/j.promfg.2020.08.088

Google Scholar

[26] J. Ilmola, A. Pohjonen, O. Seppälä, & J. Larkiola. The effect of internal contact pressure on thermal contact conductance during coil cooling. Procedia Manufacturing, (2020), 50, 418-424.

DOI: 10.1016/j.promfg.2020.08.076

Google Scholar

[27] H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids (2. ed., repr.). (Clarendon Press, Oxford, 1989) pp.21-23.

Google Scholar

[28] A. Pohjonen, J. Paananen, J. Mourujärvi, T. Manninen, J. Larkiola, & D. Porter, Computer simulations of austenite decomposition of microalloyed 700 MPa steel during cooling. In AIP Conference Proceedings, (2018), Vol. 1960, No. 1, p.090010. AIP Publishing LLC.

DOI: 10.1063/1.5034936

Google Scholar

[29] A. Pohjonen, A. Kaijalainen, J. Larkiola, J. Mourujärvi, Computer simulations of austenite decomposition of hot formed steels during cooling, Procedia Manuf., (2018), 15, 1864–1871.

DOI: 10.1016/j.promfg.2018.07.203

Google Scholar

[30] M. Somani, A. Pohjonen, D. Porter, Modelling of austenite transformation along arbitrary cooling paths, Comput. Mater. Sci., (2018), 150, https://doi.org/10.1016/j.commatsci. 2018.03.052.

DOI: 10.1016/j.commatsci.2018.03.052

Google Scholar

[31] V. Javaheri, A. Pohjonen, J. I. Asperheim, D. Ivanov & D. Porter, Physically based modeling, characterization and design of an induction hardening process for a new slurry pipeline steel. Materials & Design, (2019), 182, 108047.

DOI: 10.1016/j.matdes.2019.108047

Google Scholar

[32] J. Ilmola, A. Pohjonen, S. Koskenniska, O. Seppälä, O. Leinonen, J. Jokisaari, J. Pyykönen, & Larkiola, J. Coupled heat transfer and phase transformations of dual-phase steel in coil cooling. Materials Today Communications, (2021), 26, 101973.

DOI: 10.1016/j.mtcomm.2020.101973

Google Scholar

[33] A. Pohjonen, S. Koskenniska, J. Uusitalo, T. Nyo, J. Larkiola, J. Kömi, Application of Image Analysis Method Combined with Microhardness Measurement to Determine Phase Fractions, in: Mater. Sci. Forum, (2021), ISSN: 1666-9752, p.1153–1158.

DOI: 10.4028/www.scientific.net/msf.1016.1153

Google Scholar

[34] O. Seppälä, A. Pohjonen, A. Kaijalainen, J. Larkiola, & D. Porter, Simulation of bainite and martensite formation using a novel cellular automata method. Procedia Manufacturing, (2018), 15, 1856-1863.

DOI: 10.1016/j.promfg.2018.07.204

Google Scholar

[35] O. Seppälä, A. Pohjonen, & J. Larkiola, Effect of Anisotropic Growth and Grain Boundary Impingement on Bainite Transformation Models, Proceedings of The 61st SIMS Conference on Simulation and Modelling SIMS 2020, (2021), September 22-24, Virtual Conference, Finland

DOI: 10.3384/ecp20176146

Google Scholar

[36] A. Kaijalainen, O. Seppälä, V. Javaheri, A. Pohjonen, D. Porter, & J. Kömi, Comparison between experimental data and a cellular automata simulation of martensite formation during cooling. In Journal of Physics: Conference Series, (2019), Vol. 1270, No. 1, p.012035. IOP Publishing.

DOI: 10.1088/1742-6596/1270/1/012035

Google Scholar

[37] A. Pohjonen, Full field model describing phase front propagation, transformation strains, chemical partitioning and diffusion in solid-solid phase transformations. Advanced Theory and Simulations, (2023), 2200771

DOI: 10.1002/adts.202200771

Google Scholar

[38] A. Pohjonen, M. Somani, D. Porter, Effects of Chemical Composition and Austenite Deformation on the Onset of Ferrite Formation for Arbitrary Cooling Paths. Metals. (2018), 8(7):540

DOI: 10.3390/met8070540

Google Scholar

[39] A. Pohjonen, M. C. Somani, J. Pyykkönen, J. Paananen, & D. A. Porter, The onset of the austenite to bainite phase transformation for different cooling paths and steel compositions. In Key Engineering Materials, (2016), Vol. 716, pp.368-375. Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/kem.716.368

Google Scholar

[40] J. Miettinen, S. Koskenniska, M. Somani, S. Louhenkilpi, A. Pohjonen, J. Larkiola, & J. Kömi Optimization of CCT Equations Using Calculated Grain Boundary Soluble Compositions for the Simulation of Austenite Decomposition of Steels. Metallurgical and Materials Transactions B, (2019), 50(6), 2853-2866.

DOI: 10.1007/s11663-019-01698-7

Google Scholar

[41] H. Martin, P. Amoako-Yirenkyi, A. Pohjonen, N. K. Frempong, J. Komi, & M. Somani, Statistical modeling for prediction of cct diagrams of steels involving interaction of alloying elements. Metallurgical and Materials Transactions B, (2021), 52(1), 223-235.

DOI: 10.1007/s11663-020-01991-w

Google Scholar

[42] J. Miettinen, S. Koskenniska, M. Somani, S. Louhenkilpi, A. Pohjonen, J. Larkiola, & J. Kömi, Optimization of the CCT Curves for Steels Containing Al, Cu and B. Metallurgical and Materials Transactions B, (2021), 52(3), 1640-1663.

DOI: 10.1007/s11663-021-02130-9

Google Scholar

[43] A. Pohjonen, V. Kyllönen, & J. Paananen, Analytical approximations and simulation tools for water cooling of hot rolled steel strip. In Proceedings of The 9th EUROSIM Congress on Modelling and Simulation, EUROSIM 2016, The 57th SIMS Conference on Simulation and Modelling SIMS 2016, (2018), No. 142, pp.728-734. Linköping University Electronic Press.

DOI: 10.3384/ecp17142728

Google Scholar

[44] A. Pohjonen, V. Javaheri, J. Paananen, & J. Pyykkönen, Semi-Automatic Optimization of Steel Heat Treatments for Achieving Desired Microstructure, Proceedings of The 61st SIMS Conference on Simulation and Modelling SIMS 2020, (2021), September 22-24, Virtual Conference, Finland

DOI: 10.3384/ecp20176139

Google Scholar