[1]
P. Uranga, M. Rodríguez-Ibabe J. Thermomechanical Processing of Steels. Metals. (2020) 10(5): 641
DOI: 10.3390/met10050641
Google Scholar
[2]
M. Pernach., K. Bzowski, & M. Pietrzyk . Numerical modeling of phase transformation in dual phase (DP) steel after hot rolling and laminar cooling. International Journal for Multiscale Computational Engineering, 12(5) (2014).
DOI: 10.1615/intjmultcompeng.2014010450
Google Scholar
[3]
D. Szeliga, K. Bzowski, L. Rauch, R. Kuziak, & M. Pietrzyk, Mean field and full field modelling of microstructure evolution and phase transformations during hot forming and cooling of low carbon steels. Computer Methods in Materials Science, (2020) 20(3), 121-132
DOI: 10.7494/cmms.2020.3.0727
Google Scholar
[4]
D. Szeliga, N. Czyżewska , K. Klimczak, J. Kusiak, R. Kuziak, P. Morkisz, P. Oprocha, M. Pietrzyk, L. Poloczek & P. Przybyłowicz, Stochastic model describing evolution of microstructural parameters during hot rolling of steel plates and strips. Archives of Civil and Mechanical Engineering, (2022) 22(3), 1-17.
DOI: 10.1007/s43452-022-00460-2
Google Scholar
[5]
M. Sitko, K. Banaś, & L. Madej, Scaling scientific cellular automata microstructure evolution model of static recrystallization toward practical industrial calculations. Materials, (2021), 14(15), 4082.
DOI: 10.3390/ma14154082
Google Scholar
[6]
L. Madej, & M. Sitko, Computationally Efficient Cellular Automata‐Based Full‐Field Models of Static Recrystallization: A Perspective Review. Steel research international, (2022), 2200657.
DOI: 10.1002/srin.202200657
Google Scholar
[7]
K. Bzowski, Ł. Rauch, M. Pietrzyk, M. Kwiecień, & K. Muszka, Numerical Modeling of Phase Transformations in Dual-Phase Steels Using Level Set and SSRVE Approaches. Materials, (2021), 14(18), 5363.
DOI: 10.3390/ma14185363
Google Scholar
[8]
I. Milenin, M. Pernach, & M. Pietrzyk, Application of the control theory for modelling austenite-ferrite phase transformation in steels. Computer Methods in Materials Science, (2015), 15(2), 327-335.
Google Scholar
[9]
C. A. Felker, J. G. Speer, E. De Moor, K. O. Findley, Hot Strip Mill Processing Simulations on a Ti-Mo Microalloyed Steel Using Hot Torsion Testing. Metals, (2020), 10(3):334
DOI: 10.3390/met10030334
Google Scholar
[10]
R. A. Stewart, J. G. Speer, B. G. Thomas, E. De Moor, & A. J. Clarke, Quenching and partitioning of plate steels: Partitioning design methodology. Metallurgical and Materials Transactions A, (2019), 50(10), 4701-4713.
DOI: 10.1007/s11661-019-05337-3
Google Scholar
[11]
Q. Wang, K. Peng, J. Dong, Modeling and Monitoring for Laminar Cooling Process of Hot Steel Strip Rolling with Time–Space Nature. Processes, (2022). 10(3):589. https://doi.org/10.3390/ pr10030589
DOI: 10.3390/pr10030589
Google Scholar
[12]
S. Wang, Z. Li, Z. Defeng, Z. Donghai, Coupled model of temperature and phase transformation of hot rolling low carbon steel during cooling process J. Phys.: Conf. Ser., (2019), 1168 052047
DOI: 10.1088/1742-6596/1168/5/052047
Google Scholar
[13]
A. Pesin, P. Tandon, D. O. Pustovoytov, A. Korchunov, I. Pesin, A. Dubey,. Numerical Modelling and Development of New Technical Solutions in Metallurgy and Material Processing. In Solid State Phenomena, (2020), (Vol. 304, pp.113-119). Trans Tech Publications Ltd.
DOI: 10.4028/www.scientific.net/ssp.304.113
Google Scholar
[14]
A. dos Santos, N. Ignácio, M. Fernandes, D. Baía, F. Moreira, W. da Silva Assis, P. Rios, Computational modeling of a 3D matrix of duplex stainless steel and its ultimate strength in function of the sigma phase evolution, Journal of Materials Research and Technology, (2021), Vol. 15, pp.2625-2632, ISSN 2238-7854.
DOI: 10.1016/j.jmrt.2021.09.051
Google Scholar
[15]
SIMP – System Integrated Metals Processing, DIMECC Oy, ISBN: 978952238193-4 (2017)
Google Scholar
[16]
J. Ilmola, A. Pohjonen, O. Seppälä, O. Leinonen, J. Larkiola, J. Jokisaari, E. Putaansuu, P. Lehtikangas, Coupled multiscale and multiphysical analysis of hot steel strip mill and microstructure formation during water cooling, Procedia Manuf., (2018).
DOI: 10.1016/j.promfg.2018.07.171
Google Scholar
[17]
J. Ilmola, O. Seppälä, A. Pohjonen, J. Larkiola, Virtual rolling automation and setup calculations for six stands FEM finishing mill, IOP Conference Series Materials Science and Engineering, (2022) 1270(1):012060
DOI: 10.1088/1757-899X/1270/1/012060
Google Scholar
[18]
O. Seppälä, J. Ilmola and J. Larkiola, Industrial FE-Simulation of Roughing Using an Automatic Solver Shifting Technique, Materials Science Forum, (2021), 1016, 1312–1317
DOI: 10.4028/www.scientific.net/msf.1016.1312
Google Scholar
[19]
A. Pohjonen, P. Kaikkonen, O. Seppälä, J. Ilmola, V. Javaheri, T. Manninen, & M. Somani, Numerical and experimental study on thermo-mechanical processing of medium-carbon steels at low temperatures for achieving ultrafine-structured bainite. Materialia, (2021), 18, 101150.
DOI: 10.1016/j.mtla.2021.101150
Google Scholar
[20]
O. Seppälä, A. Pohjonen, J. Ilmola, A. Jokiranta, A. Kaijalainen, M. Somani, & J. Larkiola, Simulation of deformation and static recrystallization in the stress relaxation test. In Journal of Physics: Conference Series, (2019) Vol. 1270, No. 1, p.012027. IOP Publishing.
DOI: 10.1088/1742-6596/1270/1/012027
Google Scholar
[21]
A. Pohjonen, O. Seppälä, A. Jokiranta, A. Kaijalainen, M. Somani, D. Porter, J. Larkiola, J. Kömi. Determination of static recrystallization and recovery parameters for steel by fitting model to stress relaxation data. In Journal of Physics: Conference Series, (2019), Vol. 1270, No. 1, p.012013. IOP Publishing.
DOI: 10.1088/1742-6596/1270/1/012013
Google Scholar
[22]
M. Ali, O. Seppälä, T. Fabritius, J. Kömi, Microstructure evolution and static recrystallization kinetics in hot-deformed austenite of coarse-grained Mo-free and Mo containing low-carbon CrNiMnB ultrahigh-strength steels, Materials Tocay Communications (2022).
DOI: 10.1016/j.mtcomm.2022.104676
Google Scholar
[23]
L. P. Karjalainen, J. Perttula, Characteristics of static and metadynamic recrystallization and strain accumulation in hot-deformed austenite as revealed by the stress relaxation method, ISIJ Int., (1996), 36, 729–736.
DOI: 10.2355/isijinternational.36.729
Google Scholar
[24]
O. Leinonen, J. Ilmola, O. Seppälä, A. Pohjonen, J. Paavola, S. Koskenniska, & J. Larkiola., Experimental determination of heat transfer coefficients in roll bite and air cooling for computer simulations of 1100 MPa carbon steel rolling. In AIP Conference Proceedings, (2018), Vol. 1960, No. 1, p.170009. AIP Publishing LLC.
DOI: 10.1063/1.5035066
Google Scholar
[25]
S. Uusikallio, S. Koskenniska, J. Ilmola, J. Paavola, A. Pohjonen, Larkiola, J., & Kömi, J. Determination of effective heat transfer coefficient for water spray cooling of steel. Procedia Manufacturing, (2020), 50, 488-491.
DOI: 10.1016/j.promfg.2020.08.088
Google Scholar
[26]
J. Ilmola, A. Pohjonen, O. Seppälä, & J. Larkiola. The effect of internal contact pressure on thermal contact conductance during coil cooling. Procedia Manufacturing, (2020), 50, 418-424.
DOI: 10.1016/j.promfg.2020.08.076
Google Scholar
[27]
H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids (2. ed., repr.). (Clarendon Press, Oxford, 1989) pp.21-23.
Google Scholar
[28]
A. Pohjonen, J. Paananen, J. Mourujärvi, T. Manninen, J. Larkiola, & D. Porter, Computer simulations of austenite decomposition of microalloyed 700 MPa steel during cooling. In AIP Conference Proceedings, (2018), Vol. 1960, No. 1, p.090010. AIP Publishing LLC.
DOI: 10.1063/1.5034936
Google Scholar
[29]
A. Pohjonen, A. Kaijalainen, J. Larkiola, J. Mourujärvi, Computer simulations of austenite decomposition of hot formed steels during cooling, Procedia Manuf., (2018), 15, 1864–1871.
DOI: 10.1016/j.promfg.2018.07.203
Google Scholar
[30]
M. Somani, A. Pohjonen, D. Porter, Modelling of austenite transformation along arbitrary cooling paths, Comput. Mater. Sci., (2018), 150, https://doi.org/10.1016/j.commatsci. 2018.03.052.
DOI: 10.1016/j.commatsci.2018.03.052
Google Scholar
[31]
V. Javaheri, A. Pohjonen, J. I. Asperheim, D. Ivanov & D. Porter, Physically based modeling, characterization and design of an induction hardening process for a new slurry pipeline steel. Materials & Design, (2019), 182, 108047.
DOI: 10.1016/j.matdes.2019.108047
Google Scholar
[32]
J. Ilmola, A. Pohjonen, S. Koskenniska, O. Seppälä, O. Leinonen, J. Jokisaari, J. Pyykönen, & Larkiola, J. Coupled heat transfer and phase transformations of dual-phase steel in coil cooling. Materials Today Communications, (2021), 26, 101973.
DOI: 10.1016/j.mtcomm.2020.101973
Google Scholar
[33]
A. Pohjonen, S. Koskenniska, J. Uusitalo, T. Nyo, J. Larkiola, J. Kömi, Application of Image Analysis Method Combined with Microhardness Measurement to Determine Phase Fractions, in: Mater. Sci. Forum, (2021), ISSN: 1666-9752, p.1153–1158.
DOI: 10.4028/www.scientific.net/msf.1016.1153
Google Scholar
[34]
O. Seppälä, A. Pohjonen, A. Kaijalainen, J. Larkiola, & D. Porter, Simulation of bainite and martensite formation using a novel cellular automata method. Procedia Manufacturing, (2018), 15, 1856-1863.
DOI: 10.1016/j.promfg.2018.07.204
Google Scholar
[35]
O. Seppälä, A. Pohjonen, & J. Larkiola, Effect of Anisotropic Growth and Grain Boundary Impingement on Bainite Transformation Models, Proceedings of The 61st SIMS Conference on Simulation and Modelling SIMS 2020, (2021), September 22-24, Virtual Conference, Finland
DOI: 10.3384/ecp20176146
Google Scholar
[36]
A. Kaijalainen, O. Seppälä, V. Javaheri, A. Pohjonen, D. Porter, & J. Kömi, Comparison between experimental data and a cellular automata simulation of martensite formation during cooling. In Journal of Physics: Conference Series, (2019), Vol. 1270, No. 1, p.012035. IOP Publishing.
DOI: 10.1088/1742-6596/1270/1/012035
Google Scholar
[37]
A. Pohjonen, Full field model describing phase front propagation, transformation strains, chemical partitioning and diffusion in solid-solid phase transformations. Advanced Theory and Simulations, (2023), 2200771
DOI: 10.1002/adts.202200771
Google Scholar
[38]
A. Pohjonen, M. Somani, D. Porter, Effects of Chemical Composition and Austenite Deformation on the Onset of Ferrite Formation for Arbitrary Cooling Paths. Metals. (2018), 8(7):540
DOI: 10.3390/met8070540
Google Scholar
[39]
A. Pohjonen, M. C. Somani, J. Pyykkönen, J. Paananen, & D. A. Porter, The onset of the austenite to bainite phase transformation for different cooling paths and steel compositions. In Key Engineering Materials, (2016), Vol. 716, pp.368-375. Trans Tech Publications Ltd.
DOI: 10.4028/www.scientific.net/kem.716.368
Google Scholar
[40]
J. Miettinen, S. Koskenniska, M. Somani, S. Louhenkilpi, A. Pohjonen, J. Larkiola, & J. Kömi Optimization of CCT Equations Using Calculated Grain Boundary Soluble Compositions for the Simulation of Austenite Decomposition of Steels. Metallurgical and Materials Transactions B, (2019), 50(6), 2853-2866.
DOI: 10.1007/s11663-019-01698-7
Google Scholar
[41]
H. Martin, P. Amoako-Yirenkyi, A. Pohjonen, N. K. Frempong, J. Komi, & M. Somani, Statistical modeling for prediction of cct diagrams of steels involving interaction of alloying elements. Metallurgical and Materials Transactions B, (2021), 52(1), 223-235.
DOI: 10.1007/s11663-020-01991-w
Google Scholar
[42]
J. Miettinen, S. Koskenniska, M. Somani, S. Louhenkilpi, A. Pohjonen, J. Larkiola, & J. Kömi, Optimization of the CCT Curves for Steels Containing Al, Cu and B. Metallurgical and Materials Transactions B, (2021), 52(3), 1640-1663.
DOI: 10.1007/s11663-021-02130-9
Google Scholar
[43]
A. Pohjonen, V. Kyllönen, & J. Paananen, Analytical approximations and simulation tools for water cooling of hot rolled steel strip. In Proceedings of The 9th EUROSIM Congress on Modelling and Simulation, EUROSIM 2016, The 57th SIMS Conference on Simulation and Modelling SIMS 2016, (2018), No. 142, pp.728-734. Linköping University Electronic Press.
DOI: 10.3384/ecp17142728
Google Scholar
[44]
A. Pohjonen, V. Javaheri, J. Paananen, & J. Pyykkönen, Semi-Automatic Optimization of Steel Heat Treatments for Achieving Desired Microstructure, Proceedings of The 61st SIMS Conference on Simulation and Modelling SIMS 2020, (2021), September 22-24, Virtual Conference, Finland
DOI: 10.3384/ecp20176139
Google Scholar