Microscopic Formation Mechanism and Physical Properties of Mo/Cu Composites with High Densification

Article Preview

Abstract:

The formation mechanism and physical properties of high-densification Mo/Cu composites are studied by analyzing materials' microstructure, atom diffusion near the phase interface and physical properties. In the liquid phase sintering, the atomic diffusion occurs at the interface of molybdenum and copper, mainly the diffusion of copper atoms into molybdenum phase. Copper atoms in the material diffuse into the molybdenum phase to form a micron sized Cu-Mo solid solution, and no compound phase is found in the material structure, which forms a good interface bonding effect and makes it have high densification. The average linear expansion coefficients, thermal conductivities, electrical conductivities and tensile strengths of high-densification Mo/Cu composites with different copper content are linearly correlated with copper content. Mo80Cu20 is organized as a connected molybdenum skeleton and a small amount of copper phase in the voids. The tensile fracture of Mo80Cu20 is mainly exhibited as brittle fracture of the sintering neck of the molybdenum phase. The copper phase in Mo70Cu30, Mo60Cu40 or Mo50Cu50 is in a connected state, with plasticity significantly increased. Under the action of tensile stress, the ductile fracture of copper phase and the brittle fracture of sintering neck of the molybdenum phase occur simultaneously in these materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1094)

Pages:

35-44

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. L. Johnson: Met. Hard Mater. Vol. 53(Pt. B) (2015), p.80.

Google Scholar

[2] A. Sun, D. Wang, Z. Wu and X. Zan: J. All. Comp. Vol. 505(2) (2010), p.588.

Google Scholar

[3] J. T. Yao, C. J. Li, L. Yi, B. Chen and H. B. Huo: Mater. Des. Vol. 88(DEC.25) (2015), p.774.

Google Scholar

[4] G. S. Jiang, Z. F. Wang, Y. Gu and J. W. Liu: Rare Met. Mater. Eng. Vol. 41(1) (2012), p.161, in Chinese.

Google Scholar

[5] D. Z. Wang, X. J. Dong, P. Zhou, A. K. Sun and B. H. Duan: Int. J. Refract. Met. Hard Mater. Vol. 42 (2014), p.240.

Google Scholar

[6] X. P. Ji, W. C. Cao, C. Y. Bu, Y. D. Wu and G. H. Zhang: Int. J. Refract. Met. Hard Mater. Vol. 81 (2019), p.196.

Google Scholar

[7] A. B. Paola, S. Benjamin and H. P. Rodrigo: Mater. Sci. Eng. A Vol. 701 (2017), p.237.

Google Scholar

[8] S. V. Aydinyan, H. V. Kirakosyan and S. L. Kharatyan: Int. J. Refract. Met. Hard Mater. Vol. 54 (2016), p.455.

Google Scholar

[9] D. Z. Wang, Y. Q. Zhang and B. H. Duan: Non. Met. Sci. Eng. Vol. 9(3) (2018), p.11, in Chinese.

Google Scholar

[10] T. Minasyan, H. Kirakosyan, S Aydinyan, L. Liu, S. Kharatyan and I. Hussainova: J. Mater. Sci. Vol. 53 (2018), p.16598.

DOI: 10.1007/s10853-018-2787-1

Google Scholar

[11] O. V. Belay and S. P. Kiselev: Phys. Mesomech. Vol. 14(3-4) (2011), p.145.

Google Scholar

[12] S. L. Han, Y. X. Cai, Y. Q. Song and S. Cui: Rare Met. Mater. Eng. Vol. 39(6) (2010), p.989.

Google Scholar

[13] V. Tsakiris, E. Enescu, M. Lungu, M. Lucaci and I. Ioana: International Symposium on Advanced Topics in Electrical Engineering IEEE (2015), p.490.

DOI: 10.1109/atee.2015.7133851

Google Scholar

[14] Z. F. Li, H. Y. Liu, A. J. Li, H. L. Zhang, Y. P. Huang and Y. Shi: Adv. Mater. Res. Vol. 873 (2014), p.67.

Google Scholar

[15] I. Zhirkov, A. Petruhins, P. Polcik, S. Kolozsvari and J. Rosen: Appl. Phys. Let. Vol. 108(5) (2016), p.73.

Google Scholar

[16] X. H. Zhou, Y. H. Yang, X. S. Gong and S. J. Yong: Ord. Mater. Sci. Eng. Vol. 38(3) (2015), p.48, in Chinese.

Google Scholar

[17] O. C. Sang, D. Klein, H. Liao, L. Dembinski and C. Coddet: Sur. Coat. Tec. Vol. 200(21-22) (2006), p.5682.

Google Scholar

[18] A. K. Sun, Y. J. Liu and Q. R. Chen: J. Mater. Eng. Vol. 47(1) (2019), p.112.

Google Scholar

[19] J. Li, G. S. Jiang, S. Zhang and Z. F. Wang: Mater. Sci. Eng. Powd. Metall. Vol. 21(4) (2016), p.610, in Chinese.

Google Scholar

[20] J. F. Wang, C. Y. Bu, K. He, X. P. Ji, H. Zhang, G. H. Zhang and G. Z. Zhou: Alloys, Pow. Metall. Tec. Vol. 39(1) (2021), p.24, in Chinese.

Google Scholar

[21] C. L. Sun: The Study on Preparation and Properties of Mo-20wt. %Cu Composites (Xi'an University of Technology, Chinese 2019).

Google Scholar

[22] A. Kumar, K. Jayasankar, M. Debata and A. Mandal: J. All. Comp. Vol. 647 (2015), p.1040.

Google Scholar

[23] Z. H. Cao, X. R. Jin, T. Li and J. Y. Zeng: Elec. Eng. Mater. Vol. 2 (2021), p.3, in Chinese.

Google Scholar

[24] X. J. Zheng, W. B. Fan and F. Xue: Nonferrous. Met. Eng. Vol. 10(8) (2020), p.1, in Chinese.

Google Scholar

[25] L. Shi: Study on Activated Sintering Technology of Molybdenum Copper Alloy (Harbin University of Science and Technology, Chinese 2020).

Google Scholar

[26] U. Mizutani: Hume-rothery Rules for Structurally Complex Alloy Phases (CSC Press, Boca Raton 2010).

DOI: 10.1201/b10324

Google Scholar

[27] S. Ke, K. Feng, H. Zhou and Y. Shui: J. All. Comp. Vol. 775 (2019), p.784.

Google Scholar

[28] J. Du, H. Yuan. X. Chan and Y. Liu: J. Mater. Sci. Tec. Vol. 34(4) (2018), p.689.

Google Scholar

[29] R. M. German: Metall. Mater. Transa. A Vol. 24(8) (1993), p.1746.

Google Scholar

[30] D. S. McLachlan, M. Blaszkiewicz and R. E. Newnham: J. Am. Chem. Soc. Vol. 73(8) (1990), p.2187.

Google Scholar

[31] X. Chen, H. Zhang and G. Zhao: J. Mater. Eng. Per. Vol. 31(3) (2022), p.2551.

Google Scholar

[32] S. Liu, M. Xu, T. R. Li, G. H. Liu, Z. D. Wang and G. D: Rare Met. Mater. Eng. Vol. 50(9) (2021), p.3203.

Google Scholar

[33] Y. Pan: J. Mater. Eng. Per. Vol. 30(4) (2021), p.2661.

Google Scholar

[34] T.C. Zou, M. Y. Chen, H. Zhu and S. Y. Mei: J. Mater. Eng. Per. Vol. 31(3) (2022), p.1791.

Google Scholar