Strong Acousto-Plasmonic Coupling in Film-Coupled Nanoparticles Mediated by Surface Acoustic Waves

Article Preview

Abstract:

The interaction between phonons and localized plasmons in film-coupled nanoparticles designs can be exploited both for modulating the scattered electromagnetic field and the understanding of the mechanical vibrations at nanoscale. In this paper, we show by finite element numerical analysis an enhanced optomechanical interaction in a film-coupled gold nanoridges or pillars mediated by surface acoustic waves. The metallic nanoparticles are placed atop a multilayer structure consisting of a thin dielectric spacer covering a gold film layer on a silicon dioxide/or silicon substrate. Optical simulations reveal the existence of surface localized plasmons in the infrared range confined under the nanoparticles in the dielectric spacer and/or in between such particles. Optomechanical coupling between the plasmonic modes and localized phonons is evaluated from the shift in the plasmon eigenfrequency. It is found that the compressional, the in-phase compressional and the out-of-phase flexural modes, yield the highest coupling rates. Such phonons are excited by means of SAW launched from the system inlet in front of the particles. The findings in this paper could help design new generation of acousto-optic modulators monitored by fast coherent surface acoustics.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1095)

Pages:

11-20

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. A. Fuhrmann, M. T. Susanna, H. kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, H. J. Krenner, Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons, Nat Photonics. 5 (2011) 605–609.

DOI: 10.1038/nphoton.2011.208

Google Scholar

[2] V. Laude, A. Belkhir, A. F. Alabiad, M. Addouche, S. Benchabane, A. Khelif and F. I. Baida, Extraordinary nonlinear transmission modulation in a doubly resonant acousto-optical structure, Optica. 4 (2017) 1245-1250.

DOI: 10.1364/optica.4.001245

Google Scholar

[3] R. Gao, Y. He, D. Zhang, G. Sun, J. X. He, J. F. Li, M. D. Li, Z. Yang, Gigahertz optoacoustic vibration in Sub-5 nm tip-supported nano-optomechanical metasurface. Nat Commun 14, (2023) 485.

DOI: 10.1038/s41467-023-36127-6

Google Scholar

[4] M. Sansa, M. Defoort, A. Brenac, M. Sansa, M. Defoort, A. Brenac, M. Hermouet, L. Banniard, A. Fafin, M. Gely, C. Masselon, I. Favero, G. Jourdan and S. Hentz, Optomechanical mass spectrometry, Nat Commun. 11 (2020) 3781.

DOI: 10.1038/s41467-020-17592-9

Google Scholar

[5] H. Xiong, L. -G. Si, Y. Wu, Precision measurement of electrical charges in an optomechanical system beyond linearized dynamics, Appl. Phys. Lett. 110 (2017) 171102.

DOI: 10.1063/1.4982167

Google Scholar

[6] J. Xia, Q. Qiao, G. Zhou, F. S. Chau and G. Zhou, Opto-Mechanical Photonic Crystal Cavities for Sensing Application, Appl. Sci. 10 (2020) 7080.

DOI: 10.3390/app10207080

Google Scholar

[7] S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, E. M. Weig, Optomechanics for quantum technologies, Nat. Phys. 18, (2022) 15–24.

DOI: 10.1038/s41567-021-01402-0

Google Scholar

[8] D. Royer, E. Dieulesaint, Elastic Waves in Solids, Springer, New York, 2000.

Google Scholar

[9] K.C. Balram, M. Davanço, J. Y. Lim, J. D. Song and K. Srinivasan, Moving boundary and photoelastic coupling in GaAs optomechanical resonators, Optica. 1 (2014) 414-420.

DOI: 10.1364/optica.1.000414

Google Scholar

[10] B. Djafari-Rouhani, S. El-Jallal, Y. Pennec, Phoxonic crystals and cavity optomechanics, C. R. Physique. 17 (2016) 555–564.

DOI: 10.1016/j.crhy.2016.02.001

Google Scholar

[11] M. H. Aram and S. Khorasani, Optomechanical coupling strength in various triangular phoxonic crystal slab cavities, J. Opt. Soc. Am. B. 35 (2018) 1390-1396.

DOI: 10.1364/josab.35.001390

Google Scholar

[12] G. Arregui, R. C. Ng, M. Albrechtsen, S. Stobbe, C. M. Sotomayor-Torres, and P. D. García, Cavity Optomechanics with Anderson-Localized Optical Modes, Phys. Rev. Lett. 130, (2023) 043802.

DOI: 10.1103/physrevlett.130.043802

Google Scholar

[13] H. Okamoto, S. Kamada, K. Yamaguchi, M. Haraguchi, T. Okamoto, Experimental confirmation of self-imaging effect between guided light and surface plasmon polaritons in hybrid plasmonic waveguides. Sci Rep 12, (2022) 17943.

DOI: 10.1038/s41598-022-22796-8

Google Scholar

[14] A. Noual, O.E. Abouti, E.H. El Boudouti et al., Plasmonic-induced transparency in a MIM waveguide with two side-coupled cavities. Appl. Phys. A. 123 (2017) 49.

DOI: 10.1007/s00339-016-0638-y

Google Scholar

[15] S. Tamazouzt Nait, A.G. M. da Silva et al, Plasmon-enhanced electrocatalytic oxygen reduction in alkaline media on gold nanohole electrodes, J. Mater. Chem. A, 8 (2020) 10395-10401.Top of Form

DOI: 10.1039/c9ta14174j

Google Scholar

[16] J. Cheng, S. Xu, Learning Nonlinear Waves in Plasmon-induced Transparency. ArXiv, abs/2108.01508, 2021.

Google Scholar

[17] A. Girard, H. Gehan, A. Mermet, C. Bonnet, J. Lermé, A. Berthelot, E. Cottancin, A. Crut, J. Margueritat, Acoustic mode hybridization in a single dimer of gold nanoparticles, Nano Lett. 18 (2018) 3800.

DOI: 10.1021/acs.nanolett.8b01072

Google Scholar

[18] A. Girard, J. Lermé et al., Inelastic light scattering by multiple vibrational modes in individual gold nanodimers, J. Phys. Chem. C. 123 (2019) 14834.

DOI: 10.1021/acs.jpcc.9b03090

Google Scholar

[19] A. Noual, E. Kang, T. Maji, M. Gkikas, B. Djafari-Rouhani and G. Fytas, Optomechanic Coupling in Ag Polymer Nanocomposite Films, J. Phys. Chem. C. 125 (2012) 14854–14864.

DOI: 10.1021/acs.jpcc.1c04549

Google Scholar

[20] T. Vasileiadis, A. Noual, Y. Wang, B. Graczykowski, B. Djafari-Rouhani, S. Yang, G. Fytas, Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocomposites, ACS Nano. 16 (2022) 20419–20429.

DOI: 10.1021/acsnano.2c06673

Google Scholar

[21] T.-R. Lin, C.-H. Lin and J.-C. Hsu, Strong Optomechanical Interaction in Hybrid Plasmonic-Photonic Crystal Nanocavities with Surface Acoustic Waves, Sci Rep. 5. (2015) 13782.

DOI: 10.1038/srep13782

Google Scholar

[22] A. Noual, R. Akiki, Y. Pennec, E. H. El Boudouti, and B. Djafari-Rouhani, Surface Acoustic Waves-Localized Plasmon Interaction in Pillared Phononic Crystals, Phys. Rev. Applied. 13 (2020) 024077.

DOI: 10.1103/physrevapplied.13.024077

Google Scholar

[23] L. Kelly, H. Northfield, S. Rashid, X. Bao, P. Berini, Fabrication of high frequency SAW devices using tri-layer lift-off photolithography. Microelectron. Eng., 253 (2022), 111671.

DOI: 10.1016/j.mee.2021.111671

Google Scholar

[24] A. Noual, R. Akiki, G. Lévêque, Y. Pennec, and B. Djafari-Rouhani, Enhanced phonon-plasmon interaction in film-coupled dimer nanoridges mediated by surface acoustic waves, Opt. Express. 29 (2021) 43104-43123.

DOI: 10.1364/oe.444430

Google Scholar

[25] W. Yan, R. Faggiani and P. Lalanne, Rigorous modal analysis of plasmonic nanoresonators, Phys. Rev. B, 97. (2018) 205422.

DOI: 10.1103/physrevb.97.205422

Google Scholar

[26] K. C. Balram, M. I. Davanço, B. R. Ilic, J.-H. Kyhm, J. D. Song, and K. Srinivasan, Acousto-Optic Modulation and Optoacoustic Gating in Piezo-Optomechanical Circuits, Phys. Rev. Appl. 7 (2017) 024008.

DOI: 10.1103/physrevapplied.7.024008

Google Scholar

[27] I. M. Sopko and G. A. Knyazev, Optical modulator based on acousto-plasmonic coupling, Phys. Wave Phenom. 24 (2016) 124.

DOI: 10.3103/s1541308x16020060

Google Scholar

[28] D. Ahmed, X. Peng, A. Ozcelik, Y. Zheng, and T. J. Huang, Acousto-plasmofluidics: Acoustic modulation of surface plasmon resonance in microfluidic systems, AIP Adv. 5 (2015) 097161.

DOI: 10.1063/1.4931641

Google Scholar

[29] A. Kolomenskii, E. Surovic, and H. A. Schuessler, Optical detection of acoustic waves with surface plasmons. Appl. Opt. 57 (2018) 5604.

DOI: 10.1364/ao.57.005604

Google Scholar