Transport Properties Study of ZnSb Compound Using BoltzTrap First-Principles

Article Preview

Abstract:

In the last few years, materials that may have favorable thermoelectric properties have aroused great interest, because they have the ability to generate electricity through the thermoelectric effect. In this work, the temperature effect on the transport properties of a ZnSb compound having an orthorhombic structure is studied, using the local density approximation with the modified approach of Becke and Johnson (LDA + mBJ), within the framework of density functional theory (DFT). To do this, we use the BoltzTrap package implemented in the Wien2k code, with a constant relaxation time of the charge carriers. All transport properties were studied in the temperature range of 300 to 600 K. Moreover, for high temperatures, the prediction of the figure of merit of ZnSb indicates that the compound is much more suitable for thermoelectric devices. Also, the Pauli magnetic susceptibility of zinc antimonide showed that this material is non-magnetic.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1095)

Pages:

3-9

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.-B. Xiong et al, « Enhanced thermoelectric figure of merit in p-type Ag-doped ZnSb nanostructured with Ag3Sb », Scripta Materialia, vol. 69, p.397‑400, 2013.

DOI: 10.1016/j.scriptamat.2013.05.029

Google Scholar

[2] D. Liu et al, « Active low-grade energy recovery potential for building energy conservation », Renewable and Sustainable Energy Reviews, vol. 14, p.2736‑2747, 2010.

DOI: 10.1016/j.rser.2010.06.005

Google Scholar

[3] R. Funahashi et al, « A portable thermoelectric-power-generating module composed of oxide devices ». American Institute of Physics, 2006.

Google Scholar

[4] C. Uher et al, « Transport properties of pure and doped MNiSn (M= Zr, Hf) », Physical Review B, vol. 59 , p.8615, 1999.

Google Scholar

[5] W. Xie et al, « Recent advances in nanostructured thermoelectric half-Heusler compounds », Nanomaterials, vol. 2, p.379‑412, 2012.

DOI: 10.3390/nano2040379

Google Scholar

[6] S. Chen et al « Recent progress of half-Heusler for moderate temperature thermoelectric applications », Materials today, vol. 16 , p.387‑395, 2013.

DOI: 10.1016/j.mattod.2013.09.015

Google Scholar

[7] C. Okamura et al, « Preparation of single-phase ZnSb thermoelectric materials using a mechanical grinding process », Materials transactions, vol. 51, p.860‑862, 2010.

DOI: 10.2320/matertrans.mh200902

Google Scholar

[8] S. Saadat et al., « Template-free electrochemical deposition of interconnected ZnSb nanoflakes for li-ion battery anodes », Chemistry of Materials, vol. 23, p.1032‑1038, 2011.

DOI: 10.1021/cm103068v

Google Scholar

[9] C.-M. Park et al, « Quasi-Intercalation and Facile Amorphization in Layered ZnSb for Li-Ion Batteries », Advanced materials, vol. 22 , p.47‑52, 2010.

DOI: 10.1002/adma.200901427

Google Scholar

[10] L. Bjerg et al, « Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3 », Physical Review B, vol. 89, no 2, p.024304, 2014.

Google Scholar

[11] L. Bjerg, et al, « Ab initio calculations of intrinsic point defects in ZnSb », Chemistry of Materials, vol. 24, p.2111‑2116, 2012.

DOI: 10.1021/cm300642t

Google Scholar

[12] A. Bafekry et al., « Surface functionalization of the honeycomb structure of zinc antimonide (ZnSb) monolayer: A first-Principles study », Surface Science, vol. 707, p.121796, 2021.

DOI: 10.1016/j.susc.2020.121796

Google Scholar

[13] A. Bafekry et al, « Electro-optical and mechanical properties of Zinc antimonide (ZnSb) monolayer and bilayer: A first-principles study », Applied Surface Science, vol. 540, p.148289, 2021.

DOI: 10.1016/j.apsusc.2020.148289

Google Scholar

[14] S. Malki et al, « Structural and electronic properties of zinc antimonide ZnSb », Materials Today: Proceedings, vol. 31, p. S41‑S44, 2020.

DOI: 10.1016/j.matpr.2020.05.598

Google Scholar

[15] S. Malki et al, « A First-Principles Investigation on Electronic Structure and Optical Properties of Tetragonal Iron Antimonide FeSb2 », Journal of Superconductivity and Novel Magnetism, p.1‑10, 2022.

DOI: 10.1007/s10948-022-06201-z

Google Scholar

[16] X. Song et al, « Review of research on the thermoelectric material ZnSb », Thermoelectrics for Power Generation: A Look at Trends in the Technology, 2016.

DOI: 10.5772/65661

Google Scholar

[17] K. Niedziolka et al, « Influence of the Exchange–Correlation Functional on the Electronic Properties of ZnSb as a Promising Thermoelectric Material », Journal of Electronic Materials, vol. 44, p.1540‑1546, 2015.

DOI: 10.1007/s11664-014-3459-9

Google Scholar

[18] G.-L. Zhao et al, « Reliable density functional calculations for the electronic structure of thermoelectric material ZnSb », AIP Advances, vol. 8, p.105211, 2018.

DOI: 10.1063/1.5051346

Google Scholar

[19] A. Berche et al, « Thermoelectric power factor of pure and doped ZnSb via DFT based defect calculations », Physical Chemistry Chemical Physics, vol. 21, p.23056‑23064, 2019.

DOI: 10.1039/c9cp04397g

Google Scholar

[20] E. Sjöstedt et al, « An alternative way of linearizing the augmented plane-wave method », Solid state communications, vol. 114, p.15‑20, 2000.

DOI: 10.1016/s0038-1098(99)00577-3

Google Scholar

[21] P. Blaha et al, « wien2k », An augmented plane wave+ local orbitals program for calculating crystal properties, vol. 60, 2001.

Google Scholar

[22] W. Kohn et al, « Self-consistent equations including exchange and correlation effects », Physical review, vol. 140, p. A1133, 1965.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[23] J. P. Perdew et al, « Generalized gradient approximation made simple », Physical review letters, vol. 77, p.3865, 1996.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[24] F. Tran et al, « Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential », Physical review letters, vol. 102, p.226401, 2009.

DOI: 10.1103/physrevlett.102.226401

Google Scholar

[25] M. Yeganeh et al, « Thermoelectric properties of InN graphene-like nanosheet: a first principle study », Superlattices and Microstructures, vol. 138, p.106367, 2020.

DOI: 10.1016/j.spmi.2019.106367

Google Scholar

[26] G. K. Madsen et al, « BoltzTraP. A code for calculating band-structure dependent quantities », Computer Physics Communications, vol. 175, p.67‑71, 2006.

DOI: 10.1016/j.cpc.2006.03.007

Google Scholar

[27] P. B. Allen et al, « Anisotropic normal-state transport properties predicted and analyzed for high-Tc oxide superconductors », Physical Review B, vol. 37, no 13, p.7482, 1988.

Google Scholar

[28] M. Manzoor et al., « First-principles calculations to investigate structural, dynamical, thermodynamic and thermoelectric properties of CdYF3 perovskite », Computational and Theoretical Chemistry, vol. 1217, p.113928, 2022.

DOI: 10.1016/j.comptc.2022.113928

Google Scholar

[29] C. Wood, « Materials for thermoelectric energy conversion », Reports on progress in physics, vol. 51, p.459, 1988.

Google Scholar

[30] J. Zheng, « Recent advances on thermoelectric materials », Front. Phys. China, vol. 3, p.269‑279, 2008.

Google Scholar

[31] E. Haque et al, « Elastic, magnetic, transport and electronic properties of noncentrosymmetric M2Mo3N (M= Fe, Co, Ni, Rh): A first-principles study », Journal of Alloys and Compounds, vol. 748, p.117‑126, 2018.

DOI: 10.1016/j.jallcom.2018.03.151

Google Scholar

[32] M. Boudjelal et al., « Structural, magnetic, and optoelectronic properties of new ferromagnetic semiconductors Cd0.75Os0.25S and Cd0. 75Ir0. 25S: Insight from DFT computations », Optical and Quantum Electronics, vol. 54, p.1‑23, 2022.

DOI: 10.1007/s11082-022-04073-0

Google Scholar

[33] F. Weber et al., « Low-temperature properties and magnetic order of Eu Zn2Sb2 », Physical Review B, vol. 73, no 1, p.014427, 2006.

Google Scholar