Finite Element Modeling and Verification of the Plunge Stage in Friction Stir Welding

Article Preview

Abstract:

In the present work, a finite element model of the first stage, plunge, of friction stir welding is considered. The welded parts are flat aluminum 1050 plates. The arbitrary Lagrangian-Eulerian formulation implemented in ABAQUS/Explicit is used. The material model of the welded parts is the Johnson-Cook law, and Coulomb’s law describes the friction between the tool and the weldment. Temperature field during the process is obtained, and the influence of the parameters concerning the algorithmic implementation of the finite element method is established. The simulation results are compared with experimental results obtained for this purpose.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1096)

Pages:

193-203

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chen G., Ma Q., Zhang S., Wu J., Zhang G., Shi Q., Computational fluid dynamics simulation of friction stir welding: A comparative study on different frictional boundary conditions, Journal of Materials Science & Technology, Vol. 34, Issue 1 (2018), pp.128-134.

DOI: 10.1016/j.jmst.2017.10.015

Google Scholar

[2] Iordache M., C. Badulescu, E. Nitu, D. Iacomi. Numerical Simulation of Friction Stir Welding (FSW) Based on ABAQUS Environment. Solid State Phenomena Vol. 254 (2016), pp.272-277.

DOI: 10.4028/www.scientific.net/ssp.254.272

Google Scholar

[3] Bussetta P., N. Dialami, R. Boman, M. Chiumenti, C. Agelet de Saracibar, M. Cervera, J. Ponthot. Comaprison of a Fluid and a Solid Approach for the Numerical Simulation of Friction Stir Welding with a Non-Cylindrical Pin. Steel research int. 85, No. 6 (2014), pp.968-979.

DOI: 10.1002/srin.201300182

Google Scholar

[4] Constantin A., Boşneag A., Iordache M., Bădulescu C., Niţu E., Numerical Simulation of Friction Stir Spot Welding, Applied Mechanics and Materials, Vol. 834 (2016), pp.43-48.

DOI: 10.4028/www.scientific.net/amm.834.43

Google Scholar

[5] Boșneag A., M. Constantin E. Nițu. Numerical simulation of Friction Stir Wleding of three dissimilar aluminium alloys. Materials Science and Engineering 564 (2019), pp.1-9.

DOI: 10.1088/1757-899x/564/1/012033

Google Scholar

[6] Pan W., D. Li, A. Tartakovsky, S. Ahzi, M. Khraisheh, M. Khaleel. A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy. International Journal of Plasticity (2013).

DOI: 10.1016/j.ijplas.2013.02.013

Google Scholar

[7] Fagan T., Lemiale V., Nairn J., Ahuja Y., Ibrahim R., Estrin Y., Detailed thermal and material flow analysis of Friction Stir Welding using a three-dimensional particle based model, Journal of Materials Processing Technology, Vol. 231 (2016), pp.422-430.

DOI: 10.1016/j.jmatprotec.2016.01.009

Google Scholar

[8] Esmaily M., A. Shokuhfar. Numerical simulation of heat transfer in friction stir welding of 7075-T6 aluminum alloy and high carbon steel using Arbitrary Lagrangian Eulerian technique. Mat.-wiss. u. Werkstofftech, 41, No. 5 (2010), pp.350-355.

DOI: 10.1002/mawe.201000608

Google Scholar

[9] Meyghani B., M. Awang, S. Emamian, M. Nor, S. Pedapati. A Comparison of Different Finite Element Methods in the Thermal Analysis of Friction Stir Welding (FSW). Metals, 7 (2017), p.450.

DOI: 10.3390/met7100450

Google Scholar

[10] Pashazadeh H., J. Teimournezhad, A. Masoumi. Numerical investigation on the mechanical, thermal, metallurgical and material flow characteristics in friction stir welding of copper sheets with experimental verification. Materials and Design 55 (2014), pp.619-632.

DOI: 10.1016/j.matdes.2013.09.028

Google Scholar

[11] Mohan R., N. Rajesh, S. Kumar. Finite Element Modeling for Maximum Temperature in Friction Stir Welding of AA 1100 and Optimization of Process Parameter by Taguchi Method. IJRET, Vol. 02, Issue 05 (2014), pp.728-733.

DOI: 10.15623/ijret.2014.0305135

Google Scholar

[12] Nimankar S., S. Dahake. FEA Analysis of Frictional Heating Process (Friction Heat vs. Linear Velocity. IJESMR 3(12), (2016).

Google Scholar

[13] Schmidt H., J. Hattel. A local model for the thermomechanical conditions in friction stir welding. Modeling Simul. Mater. Sci. Eng. 13 (2005), pp.77-93.

DOI: 10.1088/0965-0393/13/1/006

Google Scholar

[14] Turkan M., O. Karakas. Two different finite element models investigation of the plunge stage in joining AZ31B magnesium alloy with friction stir welding. SN Applied Sciences 3:165 (2021.

DOI: 10.1007/s42452-021-04191-6

Google Scholar

[15] Bakroon M., R. Daryaei, D. Aubram, F. Rackwitz. Multi-Material Arbitrary Lagrangian-Eulerian and Coupled Eulerian-Lagrangian methods for large deformation geotechnical problems. NUMGE, (2018), p.673–681.

DOI: 10.1201/9781351003629-84

Google Scholar

[16] Veljić D., M. Perović, A. Sedmak, M. Rakin, N. Bajić, B. Madjo, H. Dascau. Numerical Simulation of the Plunge Stage in Friction Stir Welding. Structural Integrity and Life, Vol. 11, No. 2 (2011), pp.131-134.

Google Scholar

[17] Česnavičius R., S. Kilikevičius, P. Krasauskas, R. Dundulis, H. Olišauskas. Research of the friction stir welding process of aluminium alloys. Mechanika, Vol. 22(4) (2016), pp.291-296.

DOI: 10.5755/j01.mech.22.4.16167

Google Scholar

[18] Ma N., A. Kunigi, T. Hirashima, K. Okubo, M. Kamioka. FEM simulation for friction spot joining process. Welding International Vol. 23, No 1 (2009), pp.9-14.

DOI: 10.1080/09507110802348892

Google Scholar

[19] Sato Y., H. Takauchi, S. Park, H. Kokawa. Characteristics of the kissing-bond in friction stir welded Al alloy 1050. Materials Science and Engineering A 405 (2005), pp.333-338.

DOI: 10.1016/j.msea.2005.06.008

Google Scholar

[20] Chauhan P., R. Jain, S. Pal, S. Singh. Modeling of defects in friction stir welding using coupled Eulerian and Lagrangian method. Journal of Manufacturing Processes 34 (2018), pp.158-166.

DOI: 10.1016/j.jmapro.2018.05.022

Google Scholar

[21] Crăcănel M., E. Niţu, D. Iordache. Friction Stir Welding of Steel Structures – A Brief Review. Key Engineering Materials, Vol. 890 (2021), pp.105-119.

DOI: 10.4028/www.scientific.net/kem.890.105

Google Scholar

[22] Dialami N., M. Chiumenti, M. Cervera, C. Agelet de Saracibar. An apropos kinematic framework for the numerical modeling of friction stir welding. Computers and Structures, 117 (2013), pp.48-57.

DOI: 10.1016/j.compstruc.2012.12.006

Google Scholar

[23] Jalili N., H. Tabrizi, I. Sattarifar. Effect of Simultaneous Cooling on Temperature Field in Friction Stir Welding Process of Aluminium Ally. Proceedings of Iran International Aluminum Conference, (2014).

Google Scholar

[24] Al-Badour F., N. Merah, A. Shuaid, A. Bazoune. Experimental and Finite Element Modeling of Friction Stir Seal Welding of Tube-Tubesheet Joint. Advanced Materials Research, Vol. 445 (2012), pp.771-776.

DOI: 10.4028/www.scientific.net/amr.445.771

Google Scholar

[25] Schmidt H., J. Hattel. Thermal modelling of friction stir welding. Scripta Materialia 58 (2008), pp.332-337.

DOI: 10.1016/j.scriptamat.2007.10.008

Google Scholar

[26] Khosa S., T. Weinberger, N. Enzinger. Thermo-mechanical investigations during friction stir spot welding (FSSW) of AA6082-T6. Welding of the World, Vol. 54 (2010), R134-R145.

DOI: 10.1007/bf03263499

Google Scholar

[27] Baruah A., J. Murugesan, H. Borkar. Numerically modelled study of the plunge stage in friction stir spot welding using multi-tiered mesh partitions. Engineering Research Express 3 (2021), 045015.

DOI: 10.1088/2631-8695/ac352e

Google Scholar

[28] Kumar K., M. Sivasangari, V. Raj, L. Raj. Numerical Simulation of Friction Stir Butt Welding Processes for AZ91 Magnesium Alloy. IJRET, Vol. 03, Issue 03 (2014), pp.101-109.

DOI: 10.15623/ijret.2014.0303018

Google Scholar

[29] Dialami N., Chiumenti M., Cervera M., Segatori A., Osikowicz W., Enhanced friction model for Friction Stir Welding (FSW) analysis: Simulation and experimental validation, International Journal of Mechanical Sciences, Volume 133 (2017), pp.555-567.

DOI: 10.1016/j.ijmecsci.2017.09.022

Google Scholar

[30] Buffa G., J. Hua, R. Shivpuri, L. Fratini. A continuum based fem model for friction stir welding – model development. Materials Science and Engineering A 419 (2006), pp.389-396.

DOI: 10.1016/j.msea.2005.09.040

Google Scholar

[31] Berry G., J. Barber. The Division of Frictional Heat – A Guide to the Nature of Sliding Contact. Journal of Tribology, Vol 106 (1984), pp.405-415.

DOI: 10.1115/1.3260948

Google Scholar

[32] Abdel-Aal H. Division of frictional heat: The dependence on sliding parameters. Int. Comm. Heat Mass Transfer, Vol. 26, No. 2, (1999) pp.279-288.

DOI: 10.1016/s0735-1933(99)00014-7

Google Scholar

[33] Masaki K., Y. Sato, M. Meada, H. Kokawa. Experimental simulation of recrystallized microstructure in friction stir welding Al alloy using a plane-strain compression test. Scripta Materialia 58, (2008) pp.355-360.

DOI: 10.1016/j.scriptamat.2007.09.056

Google Scholar

[34] Santos J., Staron P., Fischer T., Robson J., Kostka A., Colegrove P., Wang H., Hilgert J., Begrmann L., Hütsch L., Huber N., Schreyer A., Understanding Precipitate Evolution During Friction Stir Welding of Al-Zn-Mg-Cu Alloy Through In-situ Measurement Coupled With Simulation, Acta Materialia, Vol. 148 (2018), pp.163-172.

DOI: 10.1016/j.actamat.2018.01.020

Google Scholar

[35] Agelet de Saracibar C., M. Chiumenti, M. Cervera, N. Dialami, A. Seret. Computational Modeling and Sub-Grid Scale Stabilizationof Incompressibility and Convection in the Numerical Simulation of Friction Stir Welding Processes. Arch Computar Methods Eng 21:3-37 (2014).

DOI: 10.1007/s11831-014-9094-z

Google Scholar

[36] Mandal S., J. Rice, A. Elmustafa. Experimental and numerical investigation of the plunge stage in friction stir welding. Journal of Material Processing Technology 203 (2008), pp.411-419.

DOI: 10.1016/j.jmatprotec.2007.10.067

Google Scholar

[37] Johnson G., Cook W., A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, International Symposium On Ballistics 7 (1983), pp.1-7.

Google Scholar

[38] Belytschko T., Kennedy J., Schoeberle S., Quasi-Eulerian finite element formulation for fluid-structure interaction, Proceedings of Joint ASME/CSME Pressure Vessels and Piping Conference. ASME: New York, p.13, ASME (1978), 78-PVP-60.

DOI: 10.1115/1.3263303

Google Scholar

[39] ABAQUS, Analysis User's Manual. ver. 6.14, Dassault Systemes Simulia Corp., Providence, RI, USA.

Google Scholar

[40] Guo Z., R. Turner, A. Da Silva, N. Sauders, F. Schroeder, P. Cetlin, J. Schillé. Introduction of Materials Modelling into Processing Simulation. Matrials Science Forum, Vol. 762 (2013), pp.266-276.

DOI: 10.4028/www.scientific.net/msf.762.266

Google Scholar

[41] Eide H., E. Meldy. Blast Loaded Aluminium Plates. Experiments and Numerical Simulations. Norwegian University of Science and Technology (2013).

Google Scholar

[42] Ferdinandov N., D. Gospodinov. Tools for Friction Stir Welding: Review. Proceeding of University of Ruse, 60 (2021), pp.15-21.

Google Scholar