Thermohydraulic Analysis of Aqueous Dispersions Effectiveness with TiO2 and Al2O3 Nanoparticles in a U-Shaped Geothermal Probe

Article Preview

Abstract:

The paper deals with the influence of Al2O3 and TiO2 nanoparticle admixtures to the water coolant on the heat exchange and the pumping power of its single-phase flow in the U-shaped vertical collector of the heat pump geothermal probe. The heat carrier is aqueous dispersions with TiO2 and Al2O3 nanoparticles at volume concentrations of 0.1 %, 0.3 %, 0.6 %, 1.0 % and 1.3 %. Studies were performed for turbulent single-phase flow with a range of Reynolds numbers 11,500–67,000 and Euler numbers 48–75 and compared with similar results for a water coolant. The optimal volume fraction of nanoparticles in the coolant, at which nanofluids provide the lowest pumping capacity of the coolant compared to the base fluid, ensuring the required heat transfer coefficient at the level of 2230 W∙m-2∙K-1 is analyzed in the article.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1096)

Pages:

87-94

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] On alternative energy sources: The Law of Ukraine of 20.02.2003 № 555-IV // Database «Legislation of Ukraine» / Verkhovna Rada of Ukraine. (date of application: 26.02.2023). [in Ukrainian].

Google Scholar

[2] Arslan, U. and Huber, H. (2013). Characterization of heat transport processes in geothermal systems. Int J Low-Carbon Technol 8: 71 – 79.

DOI: 10.1093/ijlct/ctt014

Google Scholar

[3] Lee, J. H., Hwang, K. S., Jang S. P., Lee, B. H., Kim, J. H., Choi, S. U.S. and Choi, C. J. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf.; 51 (2008) 2651–2656.

DOI: 10.1016/j.ijheatmasstransfer.2007.10.026

Google Scholar

[4] Fsadni, A. M., Whitty, J. P. M., Adeniyi, A. A., Simo, J., and Brooks, H. L. A review on the application of nanofluids in coiled tube heat exchangers. J Micro Nanomanuf. 2 (2017) 443–465.

DOI: 10.1007/978-3-319-67132-1_15

Google Scholar

[5] Sheikholeslami М., Jafaryar М., Shafee А., Li Z., Rizwan-ul Haq R. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. International Journal of Heat and Mass Transfer. 136 (2019) 1233-1240.

DOI: 10.1016/j.ijheatmasstransfer.2019.03.091

Google Scholar

[6] Rymar, T. and Kazmiruk, M. Data analysis of the turbulent flow of nanofluids «water-Al2O3» and «water-TiO2» in the Slinky collector of the heat pump. 2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT), Lviv, Ukraine, (2022), 357–360.

DOI: 10.1109/CSIT56902.2022.10000767

Google Scholar

[7] Komeilibirjandi, A., Raffiee, A. H., Maleki, A., Alhuyi Nazari, M., and Safdari Shadloo, M. Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network. J. Therm. Anal. Calorim. 139 (2019) 2679.

DOI: 10.1007/s10973-019-08838-w

Google Scholar

[8] Rymar, T., Kazmiruk, M. and Shyika I. The Efficiency of Nanofluid Use in the Heat Supply System of a House with a Geothermal Heat Pump. 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP), (2021).

DOI: 10.1109/NAP51885.2021.9568625

Google Scholar

[9] Che, S., Breitenmoser, D., Infimovskiy, Y. Y., Manera, A., and Petrov, V. CFD-simulation of two-phase flows in helical coils. Front. Energy Res. 8 (65) (2020).

DOI: 10.3389/fenrg.2020.00065

Google Scholar

[10] Naik, B. A. K., and Vinod, A. V. Heat transfer enhancement using non-Newtonian nanofluids in a shell and helical coil heat exchanger. Exp. Therm. Fluid Sci. 90 (2018) 132–142.

DOI: 10.1016/j.expthermflusci.2017.09.013

Google Scholar

[11] Kosmadakis G., Neofytou P. Investigating the effect of nanorefrigerants on a heat pump performance and cost-effectiveness. Thermal Science and Engineering Progress 13 (2019) 100371.

DOI: 10.1016/j.tsep.2019.100371

Google Scholar

[12] Shiravi, A. H., Shafiee, M., Firoozzadeh, M., Bostani, H., and Bozorgmehrian, M. Experimental study on convective heat transfer and entropy generation of carbon black nanofluid turbulent flow in a helical coiled heat exchanger. J. Therm. Anal. Calorim. (2020).

DOI: 10.1007/s10973-020-09729-1

Google Scholar

[13] Noor, Shafi, Ehsan, M. M., Salehin, Sayedus, and Sadrul Islam, A. K M Heat transfer and pumping power using nanofluid in a corrugated tube. 19th Australasian Fluid Mechanics Conference, AFMC 2014, Melbourne, VIC, 8-11 December 2014. Australasian Fluid Mechanics Society.

DOI: 10.14264/3538538

Google Scholar

[14] Wongcharee K., Eiamsa-ard S. Heat transfer enhancement by using CuO/water nanofluid in corrugated tube equipped with twisted tape. J. Int. Communications in Heat and Mass Transfer. (2012).

DOI: 10.1016/j.icheatmasstransfer.2011.11.010

Google Scholar

[15] Routbort, J.L., Singh, D., Timofeeva, E.V., Yu.W., and France D. M. Pumping power of nanofluids in a flowing system. J Nanopart Res. 13 (2011) 931–937.

DOI: 10.1007/s11051-010-0197-7

Google Scholar

[16] Vasylenko, S.M., Ukrainets, A.I., and Olishevsky, V.V. Basics of heat and mass transfer. Kyiv: NUKHT (2004) [in Ukrainian].

Google Scholar