Effect of Pb0.8La 0.2Ti0.95O3 Doping on the Electrical and Dielectric Properties of CCTO Compound Synthesized by Hybrid Method

Article Preview

Abstract:

In this work we studied the effect of the addition PL0.2T on the structural, electrical properties of the CCTO ceramic of (1-x) CaCu3Ti4O12 - x Pb0.8 La0.2Ti0.95O3 ((1-x) CCTO-x PL0.2T) with x=0.0; 0.2; 0.3; 0.4; 0.7and 1.0. The composites materials are prepared by hybrid method (solid-sol-gel) and sintered at 1000 °C for 4H. The X-Ray diffraction results reveal that the PL0.2T crystallizes in pure pseudo-cubic phase with Pm3m space group, while the CCTO show a cubic phase structure with space group Im-3. The composites samples of (1-x) CCTO-x PL0.2T indicate the coexistence of two cubic and pseudo-cubic phases. The SEM image indicate a change in grain shape and decrease of average grain size with increasing of PL0.2T content. The dielectric measurements as a function of temperature, show two anomalies which exhibit a relaxation phenomenon for x=0.2 and x=0.7 and a decrease dielectric constant value, it’s can be explained by the phase transition phenomenon of PL0.2T. The Cole-Cole diagram for all samples showed existence of two semi-arcs attributed to the grains and grains boundary, and it is found that the Rg values are smaller than the Rgb. The electrical properties give evidence on the formation of interior, barrier layer capacity (IBLC).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1096)

Pages:

49-70

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Ivry, Y, Chu, DP. Durkan, C. Bundles of poly twins as metaelastic domains in the thin polycrystalline simple multi-ferroic system PZT, Nanotechnology, 21 (2010), 065702.

DOI: 10.1088/0957-4484/21/6/065702

Google Scholar

[2] Mc. Gilly, LJ. Schilling, A. Gregg, Domain bundle boundaries in single crystal BaTiO3 lamellae searching for naturally forming dipole flux-closure/quadrupole chains, J. Nano Lett, 10 (2010), 4200–4205.

DOI: 10.1021/nl102566y

Google Scholar

[3] SV. Kalinin, AN. Morozovska, LQ. Chen, BJ. Rodriguez, Local polarization dynamics in ferroelectric materials, J.Rep Prog Phys,73 (2010), 056502.

DOI: 10.1088/0034-4885/73/5/056502

Google Scholar

[4] H. P. Soon, J. M. Xue, and J. Wang, Dielectric behaviors of Pb 1−3x/2 LaxTiO3 derived from mechanical activation, J. Appl. Phys, 95 (2004),9 .

Google Scholar

[5] L.J. Jifan , L. Sun, M. Zhao, Y. Zhang, H. Qin, and Liangmo, Magnetoelectric coupling in nanocrystalline Pb0.82La0.18TiO3, J. Appl. Phys. Lett, 101 (2012), 022901 .

Google Scholar

[6] S. Roy, S.B. Majumder, Percolation Dielectric Behavior of Composite Thin Films Of Lead Lanthanum Titanate And Cobalt Iron Oxid Synthesized By Wet Chemical Process, J. Physics letter, 375 (2011), 1538–1542.

DOI: 10.1016/j.physleta.2011.02.046

Google Scholar

[7] P. Neves, A. C. Doriguetto, V. R. Mastelaro, L.P. Lopes, Y.P. Mascarenhas, A. Michalowicz, and J.A Erias, Structural Characterization XAS and XRD Of Lanthanum Modified PbTiO3 Ceramic Materials, J. Phys. Chem. B, 108 (2004),14840.

DOI: 10.1021/jp037166h

Google Scholar

[8] S.Kim, M. Cho, T.Kim, and H.M J ang, Giant dielectric permittivity observed in lead-based perovskite ferroelectrics, J.Phys. Rev, 86 (2001),3404 .

DOI: 10.1103/physrevlett.86.3404

Google Scholar

[9] M.K. Singh, W. Prellier, M.P. Singh, R.S. Katiyar, andJ. F. Scott, Spin-glass transition in single crystal BiFeO3, J.Phys. Rev. B,77 (2008), 144403.

Google Scholar

[10] M.Venkatesan, C.B. Fitzgerald, and J.M.D Coey, Magnétisme dans le dioxyde d'hafnium, J.Nature London, 430 (2004) ,630.

Google Scholar

[11] N. H. Hong, J. Sakai, N. Poirot, and V. Brize ´, Ferromagnétisme à température ambiante observé dans des couches minces d'oxydes semi-conducteurs et isolants non dopés, J. Phys. Rev. B,73 (2006),132404.

Google Scholar

[12] J.M.D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, andL. S. Dorneles, Magnétisme dans le dioxyde d'hafnium, J.Phys. Rev. B, 72 (2005), 024450.

DOI: 10.1103/physrevb.72.024450

Google Scholar

[13] M.Ahmadipour, M.F Ain, Z.A Ahmad, A.Short Reviewon , Copper Calcium Titanat (CCTO) Electroceramic Synthesis Dielectric Properties, Film Deposition, and Sensing Application,J. Nano-Micro.Lett, 8 (2016) ,291–311.

DOI: 10.1007/s40820-016-0089-1

Google Scholar

[14] J. Zhang, J. Zheng, Y. Liu, C. Zhang, W. Hao, Z. Lei, M. Tian, The dielectric properties of CCTO ceramics prepared via different quick quenching methods, J. Mater.Res.Bull, 115 (2019), 49–54.

DOI: 10.1016/j.materresbull.2019.03.006

Google Scholar

[15] W. Yang, S. Yu, R. Sun, R. Du, Nano- and micro size effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites, J. Acta Mater, 59 (2011), 5593–5602.

DOI: 10.1016/j.actamat.2011.05.034

Google Scholar

[16] M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A. Sleight, High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases, J. Solid State. Chem, 151 (2000), 323–325.

DOI: 10.1006/jssc.2000.8703

Google Scholar

[17] J-W. Lee, J-H. Koh, Enhanced dielectric properties of Ag-doped CCTO ceramics for energy storage devices, J. Ceram. Int, 43 (2017), 9493–9497.

DOI: 10.1016/j.ceramint.2017.04.130

Google Scholar

[18] H. Yu, H. Liu, D. Luo, M. Cao, Synthèse micro-ondes de haute constante diélectrique CaCu 3 Ti 4 O 12, J. Mater Process Technol, 208 (2008), 145–148.

Google Scholar

[19] L.C. Kretly, A.F. Almeida, P.B.A. Fechine, R.S. Oliveira, A.S.B. Sombra, Permittivité diélectrique et perte des substrats CaCu 3 Ti 4 O 12 (CCTO) pour les dispositifs hyperfréquences et les antennes, J. Mater. Sci. Mater. Electron, 16 (2004), 657–663.

DOI: 10.1023/b:jmse.0000038920.30408.77

Google Scholar

[20] L. Feng ,X. Tang, Y. Yan, X. Chen , Z.Jiao , and G. Cao , Reduction Of Dielectric Losses In CaCuTi3O12 Ceramics Doping By La ,J.Phys stat, 203 (2006), 22–24.

Google Scholar

[21] F. Amaral, L.C. Costa, M.A. Valente, Reduction of dielectric losses of CaCuTi3O12 by adding TeO2, J. Non-Crystalline Solids, 357 (2011), 775 -781.

DOI: 10.1016/j.jnoncrysol.2010.07.049

Google Scholar

[22] R. Xue, D. Liu, Z. Chen, H. Dai, J. Chen, and G. Zhao, Recent progress in enhancing photocatalytic efficiency of TiO2-based materials, J of electronicmaterials, 44 (2015), 55.

Google Scholar

[23] M. Slaoui, N. Gouitaa , A. Lahrichi, A. Harrach , M. Haddad and T. Lamcharfi, synthesis and physico-chemical characterization of solis solution (1-x)CCTO-xPT ,J. Asian of Chemistry, 33-1 (2021), 1208-1214.

DOI: 10.14233/ajchem.2021.23134

Google Scholar

[24] B. BARBIER. Thèses Elaboration et caractérisation de condensateurs à base de CaCu3Ti4O12 à forte permittivité relative pour l'électronique de puissance, T. Université Toulouse III - Paul Sabatier, (2009).

Google Scholar

[25] S. Sayouri, M. Kellati, M. Taibi, N. El Moudden, M. Tlemçani, A. El Ghazouali and A. Kaal, Diffuse phase transition and relaxation behaviour in (Pb,La)TiO 3 ceramics, J. Phys. Statsol, 201 (2004), 3001–3009 .

DOI: 10.1002/pssa.200406844

Google Scholar

[26] Pu. Mao, J. Wang, Li. He, Li. Zhang, A. Annadi, F. Kang, Q. Sun, Z. Wang, and H. Gong, Excellent Capacitor–Varistor Properties in Lead-Free CaCu3Ti4O12–SrTiO3 System with a Wrinkle Structure via Interface Engineering, J. Appl Mater Interfaces, 43 (2020) ,48781–48793.

DOI: 10.1021/acsami.0c13067

Google Scholar

[27] N. Kolev, R.P. Bontchev, M.A.J. Jacobson, V.N. Popov, V.G. Hadjiev, A.P. Litvinchukand M.N. Iliev, Raman spectroscopy of CaCu3Ti4O12,  ,J. Phys, 66 (2002), 13.

Google Scholar

[28] C. Mingxiang, Thèse Extrinsic Dielectric Relaxation of Colossal Dielectric ConstantMaterial CaCu3Ti4O12, Department of Applied Physics, Polytechnic University, Hong Kong, (2011).

Google Scholar

[29] K. Chen, Y. Wu, J. Liao, J. Liao, and J. Zhu, Raman and Dielectric Spectra of CaCu3Ti4O12 Ceramics, J. Integrated Ferroelectrics, 97 (2008),143–150.

DOI: 10.1080/10584580802089023

Google Scholar

[30] J. Liu, R.W. Smith and W.-N. Mei, Synthesis of the Giant Dielectric Constant Material CaCu3Ti4O12 by Wet-Chemistry, J .American chemical society, 19-24 (2007),6020-6024.

DOI: 10.1021/cm0716553

Google Scholar

[31] G. Burns, B.A. Scott, Modes de réseau dans les pérovskites ferroélectriques PbTiO3 , J..PhysRev, 7 (1973), 3088.

Google Scholar

[32] C. Wang and L.W. Zhang,Surface -Layer effect of CaCuTi4O12, ,J.Appl Phys Lett, 88(2006), 42906.

Google Scholar

[33] D.S. Sinclair, T.B. Adams, F.D. Morrison and A.R. West, Characterisation of grain boundaries in CaCu3Ti4O12 using HREM, EDS and EELS, J.Appl. Phys.Lett, 80 (2002) ,2153– 2155.

Google Scholar

[34] N. Guitaa, T. Lamcharfi, L. Bouayad, F. Abdi, M.Ounacer and M.Sajiedine, The Study of Structure and Transitional Phases in Ba0.95 Bi0.05Ti1-XFexO3 Ceramics Synthesized by Solid State Route, Iranian Journal of Materials Science and Engineering, 18 ( 2021), 2.

Google Scholar

[35] K. Limane , M. Kellati, S. Sayouri , Relaxation and transport mechanisms in (Pb0.79La 0.21Ti0.95 )O3 ceramic, J. Condensed Matter, 6 (2005), 5.

Google Scholar

[36] N. Guitaa, T. Lamcharfi , F. Abdi and F-Z. Ahjyaje , Structural, Dielectric and Electrical Properties of Bati0.80Fe0.20O3 Modified Ceramics by Zr Addition in Ti Site at x=0.00 to 1.0, J.Iranian of Materials Science and Engineering, 18 ( 2021), 3.

Google Scholar

[37] W. Dmowski, M.K .Akbas, P.K. Davies, T. Egami, Prediction of the unit Cell Edge Length of CubiqueA2+2BB'O6 Perovskites By Multiple Linear Regression and Artificial Neural Networks, J of Physics and Chemestry of Solids, 61 (2001), 229-237.

DOI: 10.2478/bf02476250

Google Scholar

[38] N.Gouitaa, T. Lamcharfi, F. Abdi, N.S. Echatoui and M. Amarass, Diffuse and relaxor phase transitions of Ba0.95 Bi0.05 Ti1-x FexO3 ceramics at x=0.00 to 1.00 of Fe content, prepared by solid state method, J Materials Science and Engineering, 1160 (2021), 012006.

Google Scholar

[39] A.J. bel, Calculations of Dielectric Properties from the Super Paraelectric Relaxer Models, J.Phys Condens Matter, 5 (1993), 8773.

Google Scholar

[40] S. Bhaskar, S. B. Majumder, and R. S. Katiyar, Diffuse phase transition and relaxor behavior in ( PbLa)TiO3 thin films,J.Appl Phys Lett, 80 (2002), 3997.

DOI: 10.1063/1.1481981

Google Scholar

[41] M.S. Jayswal, D.K. Kanchan, P. Sharma, N. Gondaliya, Relaxation processin PbI2–Ag2 O–V2O5–B2O3system dielectric, AC conductivity and modulus studies, J.Mater Sci. Eng. B, 6 (2013), 178-775.

DOI: 10.1016/j.mseb.2013.03.013

Google Scholar

[42] S. Nasrin, A. Oueslati, I. Chaabane, M. Gargouri ,AC conductivity, electric modulus analysis and electrical conduction mechanism of RbFeP2O7 ceramic compound ,J. International 42 (2016), 14041–1404.

DOI: 10.1016/j.ceramint.2016.06.011

Google Scholar

[43] L. Wang, Q. Shenyu, C. Nan, and D. Guoping, sintering effects on dielectric properties of Zn-doped CaCu3Ti4O12 ceramic synthesized by modified sol-gel ,J. Mater Sci Technol, 26 (2010), 682.

Google Scholar

[44] B. Taeev , Synthesis and Functionalization of Nanostructured Aluminosilicates and Silicas.,J. Mir Publishers Moscow ,19 (1975), 88441.

Google Scholar

[45] Z. He, J. Ma and R. Zhang, Investigation on the microstructure and ferroelectric properties of porous PZT ceramics, J. Ceram.Int, 30 (2004),1353-1356.

DOI: 10.1016/j.ceramint.2003.12.108

Google Scholar

[46] C.L. Paven-Thivet, A. Ishikawa, A. Ziani, L.L. Gendre, M. Yoshida, J. Kubota, Photoelectrochemical Properties of Crystalline Perovskite Lanthanum Titanium Oxynitride Films under Visible Light. J. of Physical Chemistry , 113 (2009), 6156 – 6162.

DOI: 10.1021/jp811100r

Google Scholar

[47] A. Ziani, C.L. Paven-Thivet, L.L. Gendre, D. Fasquelle, J.C. Carru, F. Tessier and J. Pinel, Structural and dielectric properties of oxynitride perovskite LaTiOxNy thin films, J. Thin Solid Films, 517 (2008), 544-549.

DOI: 10.1016/j.tsf.2008.06.061

Google Scholar

[48] T.A. Vanderah, J.M. Loezos, R.S. Roth, Magnetic dielectric oxidessubsolidus phase relations in the BaO:Fe2O3: TiO2 system, J. Solid State Chem,121 (1996), 38–50.

DOI: 10.1006/jssc.1996.0006

Google Scholar

[49] S.Y. Qiu , Phase evolution and room temperature ferroelectric and magnetic properties of Fe-doped BaTiO3ceramics,J. Trans Nonferrous Met Soc China, 20 (2010), 1911–1915.

DOI: 10.1016/s1003-6326(09)60394-0

Google Scholar

[50] S.R. Elliott, A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys, 36 (1987), 135-217.

DOI: 10.1080/00018738700101971

Google Scholar

[51] A. Ghosh, Ac conduction in iron bismuthate glassy semiconductors. J.Phys, 42 (1990), 1388-1393.

DOI: 10.1103/physrevb.42.1388

Google Scholar

[52] N. Gouitaa, T. Lamcharf, M. Bouayad, F. Abdi, N. Had, Impedance, modulus and conductivity studies of Fe3+ doped BaTiO3ceramics prepared by solid state method, J.of Materials Science: Materials in Electronics, 3 (2018), 866.

DOI: 10.1007/s10854-018-8666-3

Google Scholar

[53] P. Pokhriyal, A. Bhakar, A.K. Sinha,A. Sagdeo, Colossal dielectric permittivity and mechanism of AC conduction in bulk de la fossite CuFeO2, J.Appl.Phys, 125 (2019), 164101.

DOI: 10.1063/1.5064483

Google Scholar

[54] P. Mao,J. Wang,S. Liu,L. Zhang, Y.Zhao,L.He ,Grain size effect on the dielectric andnon-ohmicpropertiesofCaCu3Ti4O12ceramicspreparedbythesol-gelprocess, J.Alloys Comp, 778 (2019), 625–632.

Google Scholar

[55] T. John, S. Irvine, C. Derek, C. Sinclair, A.R. West, Electro ceramics characterization by impedance spectroscopy, J. Adv.Mater,2 (1990) 232–238.

Google Scholar

[56] V. Buscaglia, M.T. Buscaglia, M. Viviani, L. Mitoseriu, P. Nanni, V. Trefiletti, P. Piaggio, I. Gregora, T. Ostapchuk, J. Pokorny, J. Petzelt, Grain size and grain boundary-related effects on the properties of nanocrystalline barium titanate ceramics, J. the European Ceramic Society, 60 (2006) 26-28.

DOI: 10.1016/j.jeurceramsoc.2006.02.005

Google Scholar