[1]
M. Ivry, Y, Chu, DP. Durkan, C. Bundles of poly twins as metaelastic domains in the thin polycrystalline simple multi-ferroic system PZT, Nanotechnology, 21 (2010), 065702.
DOI: 10.1088/0957-4484/21/6/065702
Google Scholar
[2]
Mc. Gilly, LJ. Schilling, A. Gregg, Domain bundle boundaries in single crystal BaTiO3 lamellae searching for naturally forming dipole flux-closure/quadrupole chains, J. Nano Lett, 10 (2010), 4200–4205.
DOI: 10.1021/nl102566y
Google Scholar
[3]
SV. Kalinin, AN. Morozovska, LQ. Chen, BJ. Rodriguez, Local polarization dynamics in ferroelectric materials, J.Rep Prog Phys,73 (2010), 056502.
DOI: 10.1088/0034-4885/73/5/056502
Google Scholar
[4]
H. P. Soon, J. M. Xue, and J. Wang, Dielectric behaviors of Pb 1−3x/2 LaxTiO3 derived from mechanical activation, J. Appl. Phys, 95 (2004),9 .
Google Scholar
[5]
L.J. Jifan , L. Sun, M. Zhao, Y. Zhang, H. Qin, and Liangmo, Magnetoelectric coupling in nanocrystalline Pb0.82La0.18TiO3, J. Appl. Phys. Lett, 101 (2012), 022901 .
Google Scholar
[6]
S. Roy, S.B. Majumder, Percolation Dielectric Behavior of Composite Thin Films Of Lead Lanthanum Titanate And Cobalt Iron Oxid Synthesized By Wet Chemical Process, J. Physics letter, 375 (2011), 1538–1542.
DOI: 10.1016/j.physleta.2011.02.046
Google Scholar
[7]
P. Neves, A. C. Doriguetto, V. R. Mastelaro, L.P. Lopes, Y.P. Mascarenhas, A. Michalowicz, and J.A Erias, Structural Characterization XAS and XRD Of Lanthanum Modified PbTiO3 Ceramic Materials, J. Phys. Chem. B, 108 (2004),14840.
DOI: 10.1021/jp037166h
Google Scholar
[8]
S.Kim, M. Cho, T.Kim, and H.M J ang, Giant dielectric permittivity observed in lead-based perovskite ferroelectrics, J.Phys. Rev, 86 (2001),3404 .
DOI: 10.1103/physrevlett.86.3404
Google Scholar
[9]
M.K. Singh, W. Prellier, M.P. Singh, R.S. Katiyar, andJ. F. Scott, Spin-glass transition in single crystal BiFeO3, J.Phys. Rev. B,77 (2008), 144403.
Google Scholar
[10]
M.Venkatesan, C.B. Fitzgerald, and J.M.D Coey, Magnétisme dans le dioxyde d'hafnium, J.Nature London, 430 (2004) ,630.
Google Scholar
[11]
N. H. Hong, J. Sakai, N. Poirot, and V. Brize ´, Ferromagnétisme à température ambiante observé dans des couches minces d'oxydes semi-conducteurs et isolants non dopés, J. Phys. Rev. B,73 (2006),132404.
Google Scholar
[12]
J.M.D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, andL. S. Dorneles, Magnétisme dans le dioxyde d'hafnium, J.Phys. Rev. B, 72 (2005), 024450.
DOI: 10.1103/physrevb.72.024450
Google Scholar
[13]
M.Ahmadipour, M.F Ain, Z.A Ahmad, A.Short Reviewon , Copper Calcium Titanat (CCTO) Electroceramic Synthesis Dielectric Properties, Film Deposition, and Sensing Application,J. Nano-Micro.Lett, 8 (2016) ,291–311.
DOI: 10.1007/s40820-016-0089-1
Google Scholar
[14]
J. Zhang, J. Zheng, Y. Liu, C. Zhang, W. Hao, Z. Lei, M. Tian, The dielectric properties of CCTO ceramics prepared via different quick quenching methods, J. Mater.Res.Bull, 115 (2019), 49–54.
DOI: 10.1016/j.materresbull.2019.03.006
Google Scholar
[15]
W. Yang, S. Yu, R. Sun, R. Du, Nano- and micro size effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites, J. Acta Mater, 59 (2011), 5593–5602.
DOI: 10.1016/j.actamat.2011.05.034
Google Scholar
[16]
M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A. Sleight, High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases, J. Solid State. Chem, 151 (2000), 323–325.
DOI: 10.1006/jssc.2000.8703
Google Scholar
[17]
J-W. Lee, J-H. Koh, Enhanced dielectric properties of Ag-doped CCTO ceramics for energy storage devices, J. Ceram. Int, 43 (2017), 9493–9497.
DOI: 10.1016/j.ceramint.2017.04.130
Google Scholar
[18]
H. Yu, H. Liu, D. Luo, M. Cao, Synthèse micro-ondes de haute constante diélectrique CaCu 3 Ti 4 O 12, J. Mater Process Technol, 208 (2008), 145–148.
Google Scholar
[19]
L.C. Kretly, A.F. Almeida, P.B.A. Fechine, R.S. Oliveira, A.S.B. Sombra, Permittivité diélectrique et perte des substrats CaCu 3 Ti 4 O 12 (CCTO) pour les dispositifs hyperfréquences et les antennes, J. Mater. Sci. Mater. Electron, 16 (2004), 657–663.
DOI: 10.1023/b:jmse.0000038920.30408.77
Google Scholar
[20]
L. Feng ,X. Tang, Y. Yan, X. Chen , Z.Jiao , and G. Cao , Reduction Of Dielectric Losses In CaCuTi3O12 Ceramics Doping By La ,J.Phys stat, 203 (2006), 22–24.
Google Scholar
[21]
F. Amaral, L.C. Costa, M.A. Valente, Reduction of dielectric losses of CaCuTi3O12 by adding TeO2, J. Non-Crystalline Solids, 357 (2011), 775 -781.
DOI: 10.1016/j.jnoncrysol.2010.07.049
Google Scholar
[22]
R. Xue, D. Liu, Z. Chen, H. Dai, J. Chen, and G. Zhao, Recent progress in enhancing photocatalytic efficiency of TiO2-based materials, J of electronicmaterials, 44 (2015), 55.
Google Scholar
[23]
M. Slaoui, N. Gouitaa , A. Lahrichi, A. Harrach , M. Haddad and T. Lamcharfi, synthesis and physico-chemical characterization of solis solution (1-x)CCTO-xPT ,J. Asian of Chemistry, 33-1 (2021), 1208-1214.
DOI: 10.14233/ajchem.2021.23134
Google Scholar
[24]
B. BARBIER. Thèses Elaboration et caractérisation de condensateurs à base de CaCu3Ti4O12 à forte permittivité relative pour l'électronique de puissance, T. Université Toulouse III - Paul Sabatier, (2009).
Google Scholar
[25]
S. Sayouri, M. Kellati, M. Taibi, N. El Moudden, M. Tlemçani, A. El Ghazouali and A. Kaal, Diffuse phase transition and relaxation behaviour in (Pb,La)TiO 3 ceramics, J. Phys. Statsol, 201 (2004), 3001–3009 .
DOI: 10.1002/pssa.200406844
Google Scholar
[26]
Pu. Mao, J. Wang, Li. He, Li. Zhang, A. Annadi, F. Kang, Q. Sun, Z. Wang, and H. Gong, Excellent Capacitor–Varistor Properties in Lead-Free CaCu3Ti4O12–SrTiO3 System with a Wrinkle Structure via Interface Engineering, J. Appl Mater Interfaces, 43 (2020) ,48781–48793.
DOI: 10.1021/acsami.0c13067
Google Scholar
[27]
N. Kolev, R.P. Bontchev, M.A.J. Jacobson, V.N. Popov, V.G. Hadjiev, A.P. Litvinchukand M.N. Iliev, Raman spectroscopy of CaCu3Ti4O12, ,J. Phys, 66 (2002), 13.
Google Scholar
[28]
C. Mingxiang, Thèse Extrinsic Dielectric Relaxation of Colossal Dielectric ConstantMaterial CaCu3Ti4O12, Department of Applied Physics, Polytechnic University, Hong Kong, (2011).
Google Scholar
[29]
K. Chen, Y. Wu, J. Liao, J. Liao, and J. Zhu, Raman and Dielectric Spectra of CaCu3Ti4O12 Ceramics, J. Integrated Ferroelectrics, 97 (2008),143–150.
DOI: 10.1080/10584580802089023
Google Scholar
[30]
J. Liu, R.W. Smith and W.-N. Mei, Synthesis of the Giant Dielectric Constant Material CaCu3Ti4O12 by Wet-Chemistry, J .American chemical society, 19-24 (2007),6020-6024.
DOI: 10.1021/cm0716553
Google Scholar
[31]
G. Burns, B.A. Scott, Modes de réseau dans les pérovskites ferroélectriques PbTiO3 , J..PhysRev, 7 (1973), 3088.
Google Scholar
[32]
C. Wang and L.W. Zhang,Surface -Layer effect of CaCuTi4O12, ,J.Appl Phys Lett, 88(2006), 42906.
Google Scholar
[33]
D.S. Sinclair, T.B. Adams, F.D. Morrison and A.R. West, Characterisation of grain boundaries in CaCu3Ti4O12 using HREM, EDS and EELS, J.Appl. Phys.Lett, 80 (2002) ,2153– 2155.
Google Scholar
[34]
N. Guitaa, T. Lamcharfi, L. Bouayad, F. Abdi, M.Ounacer and M.Sajiedine, The Study of Structure and Transitional Phases in Ba0.95 Bi0.05Ti1-XFexO3 Ceramics Synthesized by Solid State Route, Iranian Journal of Materials Science and Engineering, 18 ( 2021), 2.
Google Scholar
[35]
K. Limane , M. Kellati, S. Sayouri , Relaxation and transport mechanisms in (Pb0.79La 0.21Ti0.95 )O3 ceramic, J. Condensed Matter, 6 (2005), 5.
Google Scholar
[36]
N. Guitaa, T. Lamcharfi , F. Abdi and F-Z. Ahjyaje , Structural, Dielectric and Electrical Properties of Bati0.80Fe0.20O3 Modified Ceramics by Zr Addition in Ti Site at x=0.00 to 1.0, J.Iranian of Materials Science and Engineering, 18 ( 2021), 3.
Google Scholar
[37]
W. Dmowski, M.K .Akbas, P.K. Davies, T. Egami, Prediction of the unit Cell Edge Length of CubiqueA2+2BB'O6 Perovskites By Multiple Linear Regression and Artificial Neural Networks, J of Physics and Chemestry of Solids, 61 (2001), 229-237.
DOI: 10.2478/bf02476250
Google Scholar
[38]
N.Gouitaa, T. Lamcharfi, F. Abdi, N.S. Echatoui and M. Amarass, Diffuse and relaxor phase transitions of Ba0.95 Bi0.05 Ti1-x FexO3 ceramics at x=0.00 to 1.00 of Fe content, prepared by solid state method, J Materials Science and Engineering, 1160 (2021), 012006.
Google Scholar
[39]
A.J. bel, Calculations of Dielectric Properties from the Super Paraelectric Relaxer Models, J.Phys Condens Matter, 5 (1993), 8773.
Google Scholar
[40]
S. Bhaskar, S. B. Majumder, and R. S. Katiyar, Diffuse phase transition and relaxor behavior in ( PbLa)TiO3 thin films,J.Appl Phys Lett, 80 (2002), 3997.
DOI: 10.1063/1.1481981
Google Scholar
[41]
M.S. Jayswal, D.K. Kanchan, P. Sharma, N. Gondaliya, Relaxation processin PbI2–Ag2 O–V2O5–B2O3system dielectric, AC conductivity and modulus studies, J.Mater Sci. Eng. B, 6 (2013), 178-775.
DOI: 10.1016/j.mseb.2013.03.013
Google Scholar
[42]
S. Nasrin, A. Oueslati, I. Chaabane, M. Gargouri ,AC conductivity, electric modulus analysis and electrical conduction mechanism of RbFeP2O7 ceramic compound ,J. International 42 (2016), 14041–1404.
DOI: 10.1016/j.ceramint.2016.06.011
Google Scholar
[43]
L. Wang, Q. Shenyu, C. Nan, and D. Guoping, sintering effects on dielectric properties of Zn-doped CaCu3Ti4O12 ceramic synthesized by modified sol-gel ,J. Mater Sci Technol, 26 (2010), 682.
Google Scholar
[44]
B. Taeev , Synthesis and Functionalization of Nanostructured Aluminosilicates and Silicas.,J. Mir Publishers Moscow ,19 (1975), 88441.
Google Scholar
[45]
Z. He, J. Ma and R. Zhang, Investigation on the microstructure and ferroelectric properties of porous PZT ceramics, J. Ceram.Int, 30 (2004),1353-1356.
DOI: 10.1016/j.ceramint.2003.12.108
Google Scholar
[46]
C.L. Paven-Thivet, A. Ishikawa, A. Ziani, L.L. Gendre, M. Yoshida, J. Kubota, Photoelectrochemical Properties of Crystalline Perovskite Lanthanum Titanium Oxynitride Films under Visible Light. J. of Physical Chemistry , 113 (2009), 6156 – 6162.
DOI: 10.1021/jp811100r
Google Scholar
[47]
A. Ziani, C.L. Paven-Thivet, L.L. Gendre, D. Fasquelle, J.C. Carru, F. Tessier and J. Pinel, Structural and dielectric properties of oxynitride perovskite LaTiOxNy thin films, J. Thin Solid Films, 517 (2008), 544-549.
DOI: 10.1016/j.tsf.2008.06.061
Google Scholar
[48]
T.A. Vanderah, J.M. Loezos, R.S. Roth, Magnetic dielectric oxidessubsolidus phase relations in the BaO:Fe2O3: TiO2 system, J. Solid State Chem,121 (1996), 38–50.
DOI: 10.1006/jssc.1996.0006
Google Scholar
[49]
S.Y. Qiu , Phase evolution and room temperature ferroelectric and magnetic properties of Fe-doped BaTiO3ceramics,J. Trans Nonferrous Met Soc China, 20 (2010), 1911–1915.
DOI: 10.1016/s1003-6326(09)60394-0
Google Scholar
[50]
S.R. Elliott, A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys, 36 (1987), 135-217.
DOI: 10.1080/00018738700101971
Google Scholar
[51]
A. Ghosh, Ac conduction in iron bismuthate glassy semiconductors. J.Phys, 42 (1990), 1388-1393.
DOI: 10.1103/physrevb.42.1388
Google Scholar
[52]
N. Gouitaa, T. Lamcharf, M. Bouayad, F. Abdi, N. Had, Impedance, modulus and conductivity studies of Fe3+ doped BaTiO3ceramics prepared by solid state method, J.of Materials Science: Materials in Electronics, 3 (2018), 866.
DOI: 10.1007/s10854-018-8666-3
Google Scholar
[53]
P. Pokhriyal, A. Bhakar, A.K. Sinha,A. Sagdeo, Colossal dielectric permittivity and mechanism of AC conduction in bulk de la fossite CuFeO2, J.Appl.Phys, 125 (2019), 164101.
DOI: 10.1063/1.5064483
Google Scholar
[54]
P. Mao,J. Wang,S. Liu,L. Zhang, Y.Zhao,L.He ,Grain size effect on the dielectric andnon-ohmicpropertiesofCaCu3Ti4O12ceramicspreparedbythesol-gelprocess, J.Alloys Comp, 778 (2019), 625–632.
Google Scholar
[55]
T. John, S. Irvine, C. Derek, C. Sinclair, A.R. West, Electro ceramics characterization by impedance spectroscopy, J. Adv.Mater,2 (1990) 232–238.
Google Scholar
[56]
V. Buscaglia, M.T. Buscaglia, M. Viviani, L. Mitoseriu, P. Nanni, V. Trefiletti, P. Piaggio, I. Gregora, T. Ostapchuk, J. Pokorny, J. Petzelt, Grain size and grain boundary-related effects on the properties of nanocrystalline barium titanate ceramics, J. the European Ceramic Society, 60 (2006) 26-28.
DOI: 10.1016/j.jeurceramsoc.2006.02.005
Google Scholar