Structural Refinement, Dielectric and Electromechanical Properties of (1-x)NBT-xKBT Piezoceramics in the Morphotropic Phase Boundary Region

Article Preview

Abstract:

Lead-free ferroelectric materials of sodium-potassium bismuth titanate, (1-x)NBT-xKBT systems were synthesized by a hydrothermal process. In this way, the appropriate conditions for the hydrothermal synthesis of NBT and KBT (i.e., concentrations of synthetic precursors, solution pH and temperature) are given graphically. Ceramics of (1-x)NBT-xKBT with (x(mol.%) = 0; 12; 16; 20; 30 and 100) were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The rhombohedral-tetragonal morphotropic phase boundary (MPB) was confirmed to be in the region of 0.12 ≤ x ≤ 0.20 for (1-x)NBT-xKBT at ambient temperature. Scherrer's formula and the Williamson-Hall (W-H) analysis were used to examine the average crystallite size and lattice strain. Raman spectroscopy was effectively applied to study the structural evolution of the (1-x)NBT-xKBT phase. The ceramics exhibited a high temperature of maximum dielectric permittivity at (Tmax = 343 °C at 100 kHz) along with electromechanical coupling factors (kp = 0.34, d33 = 147 pC/N). Based on the composition of all specimens, the results indicate a diffuse phase transition, probably of second order, between ferroelectric and paraelectric phases.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1096)

Pages:

11-36

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Dorcet and G. Trolliard, "A transmission electron microscopy study of the A-site disordered perovskite Na0.5Bi0.5TiO3," Acta Mater., vol. 56, no. 8, p.1753–1761, May 2008.

DOI: 10.1016/J.ACTAMAT.2007.12.027

Google Scholar

[2] E. Aksel and J. L. Jones, "Advances in lead-free piezoelectric materials for sensors and actuators," Sensors, vol. 10, no. 3. p.1935–1954, Mar-2010.

DOI: 10.3390/s100301935

Google Scholar

[3] D. P. C. Shih, A. Aguadero, and S. J. Skinner, "Improvement of ionic conductivity in A-site lithium doped sodium bismuth titanate," Solid State Ionics, vol. 317, p.32–38, Apr. 2018.

DOI: 10.1016/J.SSI.2018.01.003

Google Scholar

[4] J. Lelievre, M. Josse, and P. Marchet, "Structure and properties of (Na0.5Bi0.5)ZrO3 (NBZ) lead-free perovskite compound," Scr. Mater., vol. 161, p.13–17, Mar. 2019.

DOI: 10.1016/J.SCRIPTAMAT.2018.10.003

Google Scholar

[5] M. Mesrar, T. Lamcharfi, N.-S. Echatoui, F. Abdi, F. Z. Ahjyaje, and M. Haddad, "Effect of barium doping on electrical and electromechanical properties of (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3," Mediterr. J. Chem., 2019.

DOI: 10.13171/mjc8319050908mm

Google Scholar

[6] K. R. Whittle et al., "In-situ irradiation of Ca1-xLa2/3xTiO3 defect perovskites: The role of vacancies in recovery," Materialia, vol. 3, p.186–191, Nov. 2018.

DOI: 10.1016/J.MTLA.2018.08.016

Google Scholar

[7] M. Mesrar, T. Lamcharfi, N. Echatoui, F. Abdi, and M. Mesrar mohammedmesrar, "Effect of sintering temperature on the microstructure and electrical properties of (Na0.5Bi0.5)TiO3 processed by the sol-gel method," J. Sol-Gel Sci. Technol. 2022, p.1–12, Jul. 2022.

DOI: 10.1007/S10971-022-05885-Y

Google Scholar

[8] Y. Guo et al., "Microstructure and dielectric properties of Ba0.6Sr0.4TiO3/(acrylonitrile-butadiene-styrene)-poly(vinylidene fluoride) composites," Adv. Compos. Hybrid Mater. 2019 24, vol. 2, no. 4, p.681–689, Aug. 2019.

DOI: 10.1007/S42114-019-00114-7

Google Scholar

[9] T. R. Shrout and S. J. Zhang, "Lead-free piezoelectric ceramics: Alternatives for PZT?," J. Electroceramics, vol. 19, no. 1, p.111–124, Sep. 2007.

DOI: 10.1007/s10832-007-9047-0

Google Scholar

[10] R. Kumari, N. Ahlawat, A. Agarwal, S. Sanghi, and M. Sindhu, "Structural transformation and investigation of dielectric properties of Ca substituted (Na0.5Bi0.5) 0.95−xBa0.05CaxTiO3ceramics," J. Alloys Compd., vol. 695, p.3282–3289, Feb. 2017.

DOI: 10.1016/j.jallcom.2016.11.200

Google Scholar

[11] N. Maikhuri, A. K. Panwar, and A. K. Jha, "Investigation of A- and B-site Fe substituted BaTiO3 ceramics," J. Appl. Phys., vol. 113, no. 17, May 2013.

DOI: 10.1063/1.4796193

Google Scholar

[12] G. A. Smolenskii and I. E. Chupis, "Ferroelectromagnets," Sov. Phys. - Uspekhi, vol. 25, no. 7, p.415–448, Jul. 1982.

DOI: 10.1070/PU1982v025n07ABEH004570

Google Scholar

[13] S. Behara et al., "Amphotericity-spectroscopy correlations in Eu doped sodium bismuth titanate (Na0.5Bi0.5TiO3)," Materialia, vol. 7, p.100426, Sep. 2019.

DOI: 10.1016/J.MTLA.2019.100426

Google Scholar

[14] M. Mesrar, T. Lamcharfi, N. S. Echatoui, and F. Abdi, "(1-x)(Na0.5Bi0.5)TiO3-x(K0.5Bi0.5)TiO3 ceramics near morphotropic phase boundary: A structural and electrical study," Materialia, vol. 22, no. March, 2022.

DOI: 10.1016/j.mtla.2022.101404

Google Scholar

[15] M. Otoničar, S. D. Škapin, M. Spreitzer, and D. Suvorov, "Compositional range and electrical properties of the morphotropic phase boundary in the Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 system," J. Eur. Ceram. Soc., vol. 30, no. 4, p.971–979, Mar. 2010.

DOI: 10.1016/j.jeurceramsoc.2009.10.006

Google Scholar

[16] Q. Wang, J. Zhang, Z. Zhang, Y. Hao, and K. Bi, "Enhanced dielectric properties and energy storage density of PVDF nanocomposites by co-loading of BaTiO3 and CoFe2O4 nanoparticles," Adv. Compos. Hybrid Mater. 2020 31, vol. 3, no. 1, p.58–65, Jan. 2020.

DOI: 10.1007/S42114-020-00138-4

Google Scholar

[17] M. Mesrar, A. Elbasset, N. S. Echatoui, F. Abdi, and T. D. Lamcharfi, "Studies of Structural, Dielectric, and Impedance Spectroscopy of KBT-Modified Sodium Bismuth Titanate Lead-Free Ceramics," ACS Omega, 2022.

DOI: 10.1021/acsomega.2c03139

Google Scholar

[18] D. D. Dung et al., "Optical properties of a new (1−x)Bi1/2Na1/2TiO3 + xPr1/2Na1/2TiO3 solid solution system," Mater. Lett., vol. 302, Nov. 2021.

DOI: 10.1016/j.matlet.2021.130381

Google Scholar

[19] Z. Raddaoui et al., "Correlation of crystal structure and optical properties of Ba0.97Nd0.0267Ti(1-x)WxO3 perovskite," RSC Adv., vol. 8, no. 49, p.27870–27880, 2018.

DOI: 10.1039/C8RA05302B

Google Scholar

[20] M. Mesrar, T. Lamcharfi, N.-S. Echatoui, F. Abdi, and A. Harrach, "High dielectric constant of (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 prepared by the hydrothermal method," Mediterr. J. Chem., 2019.

DOI: 10.13171/mjc8319051210mm

Google Scholar

[21] X. Zhou, C. Jiang, H. Luo, C. Chen, K. Zhou, and D. Zhang, "Enhanced piezoresponse and electric field induced relaxor-ferroelectric phase transition in NBT-0.06BT ceramic prepared from hydrothermally synthesized nanoparticles," Ceram. Int., vol. 42, no. 16, p.18631–18640, 2016.

DOI: 10.1016/j.ceramint.2016.08.208

Google Scholar

[22] W. Chen, Y. Li, Q. Xu, and J. Zhou, "Electromechanical properties and morphotropic phase boundary of Na 0.5Bi0.5TiO3-K0.5Bi 0.5TiO3-BaTiO3 lead-free piezoelectric ceramics," J. Electroceramics, vol. 15, no. 3, p.229–235, Dec. 2005.

DOI: 10.1007/s10832-005-3301-0

Google Scholar

[23] J. Rodríguez-Carvajal, "Recent advances in magnetic structure determination by neutron powder diffraction," Phys. B Condens. Matter, vol. 192, no. 1–2, p.55–69, Oct. 1993.

DOI: 10.1016/0921-4526(93)90108-I

Google Scholar

[24] I. Krad, O. Bidault, N. Geoffroy, and M. El Maaoui, "Preparation and characterization of K0.5Bi0.5TiO3 particles synthesized by a stirring hydrothermal method," Ceram. Int., vol. 42, no. 3, p.3751–3756, Feb. 2016.

DOI: 10.1016/j.ceramint.2015.10.158

Google Scholar

[25] J. B. Lim, D. Suvorov, M. H. Kim, and J. H. Jeon, "Hydrothermal synthesis and characterization of (Bi,K)TiO3 ferroelectrics," Mater. Lett., vol. 67, no. 1, p.286–288, Jan. 2012.

DOI: 10.1016/J.MATLET.2011.09.094

Google Scholar

[26] X. P. Jiang, M. Lin, N. Tu, C. Chen, and Y. M. Li, "Synthesis of K0.5Bi0.5TiO3 nanowires and ceramics by a simple hydrothermal method," Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 175, no. 1, p.90–93, Nov. 2010.

DOI: 10.1016/j.mseb.2010.06.010

Google Scholar

[27] B. Huang and C. Ma, "A Shamanskii-like self-adaptive Levenberg–Marquardt method for nonlinear equations," Comput. Math. with Appl., vol. 77, no. 2, p.357–373, Jan. 2019.

DOI: 10.1016/J.CAMWA.2018.09.039

Google Scholar

[28] A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, " Dielectric and Piezoelectric Properties of (Bi 0.5 Na 0.5 )TiO 3 –(Bi 0.5 K 0.5 )TiO 3 Systems ," Jpn. J. Appl. Phys., vol. 38, no. Part 1, No. 9B, p.5564–5567, Sep. 1999.

DOI: 10.1143/jjap.38.5564

Google Scholar

[29] O. Elkechai, M. Manier, and J. P. Mercurio, "Na0.5Bi0.5TiO3-K0.5Bi 0.5TiO3 (NBT-KBT) system: A structural and electrical study," Phys. Status Solidi Appl. Res., vol. 157, no. 2, p.499–506, 1996.

DOI: 10.1002/pssa.2211570234

Google Scholar

[30] X. P. Jiang, M. Lin, N. Tu, C. Chen, and Y. M. Li, "Synthesis of K0.5Bi0.5TiO3 nanowires and ceramics by a simple hydrothermal method," Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 175, no. 1, p.90–93, Nov. 2010.

DOI: 10.1016/j.mseb.2010.06.010

Google Scholar

[31] G. Das Adhikary, D. K. Khatua, A. Senyshyn, and R. Ranjan, "Long-period structural modulation on the global length scale as the characteristic feature of the morphotropic phase boundaries in the Na0.5Bi0.5TiO3 based lead-free piezoelectrics," Acta Mater., vol. 164, p.749–760, Feb. 2019.

DOI: 10.1016/J.ACTAMAT.2018.11.016

Google Scholar

[32] H. Yan et al., "Enhanced piezoelectric response and thermal stability in (1 − x − y) (Na1/2Bi1/2)TiO3–y(K1/2Bi1/2)TiO3–xBaTiO3 ternary ferroelectric single crystals," Scr. Mater., vol. 113, p.43–47, Mar. 2016.

DOI: 10.1016/J.SCRIPTAMAT.2015.10.003

Google Scholar

[33] M. D. Glinchuk and R. Farhi, "A random field theory based model for ferroelectric relaxors," J. Phys. Condens. Matter, vol. 8, no. 37, p.6985–6996, Sep. 1996.

DOI: 10.1088/0953-8984/8/37/019

Google Scholar

[34] P. M. Kibasomba et al., "Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method," Results Phys., vol. 9, p.628–635, Jun. 2018.

DOI: 10.1016/J.RINP.2018.03.008

Google Scholar

[35] S. Dagar, A. Hooda, S. Khasa, and M. Malik, "Rietveld refinement, dielectric and magnetic properties of NBT-Spinel ferrite composites," J. Alloys Compd., vol. 806, p.737–752, Oct. 2019.

DOI: 10.1016/J.JALLCOM.2019.07.178

Google Scholar

[36] P. Singh, R. Pandey, and P. Singh, "Polyol-mediated synthesis of Bi-deficient Mg2+-doped sodium bismuth titanate and study of oxide ion migration behavior with functional properties," J. Alloys Compd., vol. 860, p.158492, Apr. 2021.

DOI: 10.1016/J.JALLCOM.2020.158492

Google Scholar

[37] M. Li, M. Pietrowski, R. De Souza, H. Z.-N. materials, and undefined 2014, "A family of oxide ion conductors based on the ferroelectric perovskite Na0. 5Bi0. 5TiO3," nature.com.

DOI: 10.1038/NMAT3782

Google Scholar

[38] M. Mesrar, T. Lamcharfi, N.-S. Echatoui, and F. Abdi, "(1-x)(Na0.5Bi0.5)TiO3-x(K0.5Bi0.5)TiO3 ceramics near morphotropic phase boundary: a structural and electrical study," Materialia, p.101404, Mar. 2022.

DOI: 10.1016/J.MTLA.2022.101404

Google Scholar

[39] J. Kreiselt, A. M. Glazer, G. Jones, P. A. Thomas, L. Abello, and G. Lucazeau, "An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: The (Na1-xKx)0.5Bi0.5TiO3 (0 ≤ x ≤ 1) solid solution," J. Phys. Condens. Matter, vol. 12, no. 14, p.3267–3280, Apr. 2000.

DOI: 10.1088/0953-8984/12/14/305

Google Scholar

[40] M. Chen, Y. Pu, and L. Zhang, "Simultaneously achieving high energy-storage density and power density under low electric fields in NBT-based ceramics," Ceram. Int., vol. 47, no. 24, p.34521–34528, Dec. 2021.

DOI: 10.1016/J.CERAMINT.2021.08.367

Google Scholar

[41] P. Chen et al., "Effect of Dy2O3 content on the dielectric, ferroelectric, and energy storage properties of lead-free 0.5Na0.5Bi0.5TiO3–0.5SrTiO3 bulk ceramics," J. Mater. Sci. Mater. Electron., vol. 30, no. 14, p.13556–13566, Jul. 2019.

DOI: 10.1007/s10854-019-01723-0

Google Scholar

[42] L. Zhang and X. Hao, "Dielectric properties and energy-storage performances of (1 − x)(Na0.5Bi0.5)TiO3–xSrTiO3 thick films prepared by screen printing technique," J. Alloys Compd., vol. 586, p.674–678, Feb. 2014.

DOI: 10.1016/J.JALLCOM.2013.10.107

Google Scholar

[43] C. Cui et al., "Structure, dielectric and relaxor properties in lead-free ST-NBT ceramics for high energy storage applications," J. Alloys Compd., vol. 711, p.319–326, Jul. 2017.

DOI: 10.1016/J.JALLCOM.2017.04.023

Google Scholar

[44] A. Rezanezhad, E. Rezaie, L. S. Ghadimi, A. Hajalilou, E. Abouzari-Lotf, and N. Arsalani, "Outstanding supercapacitor performance of Nd–Mn co-doped perovskite LaFeO3@nitrogen-doped graphene oxide nanocomposites," Electrochim. Acta, vol. 335, Mar. 2020.

DOI: 10.1016/J.ELECTACTA.2020.135699

Google Scholar

[45] A. Imandoust, C. D. Barrett, T. Al-Samman, K. A. Inal, and H. El Kadiri, "A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys," J. Mater. Sci., vol. 52, no. 1, p.1–29, 2017.

DOI: 10.1007/s10853-016-0371-0

Google Scholar

[46] Y. Guo, D. Akai, K. Sawada, and M. Ishida, "Dielectric and ferroelectric properties of highly (100)-oriented (Na0.5Bi0.5)0.94Ba0.06TiO3 thin films grown on LaNiO3/γ-Al2O3/Si substrates by chemical solution deposition," Solid State Sci, vol. 10, no. 7, p.928–933, Jul. 2008.

DOI: 10.1016/j.solidstatesciences.2007.10.026

Google Scholar

[47] M. MESRAR, A. ELBASSET, F. ABDI, … N. E.-C., and undefined 2021, "IMPEDANCE SPECTROSCOPY AND PERMITTIVITY STUDY OF (1-x) NBT-xBT CERAMICS," irsm.cas.cz, vol. 66, no. 3, p.354–364, 2021.

DOI: 10.13168/cs.2022.0031

Google Scholar

[48] M. Benyoussef et al., "Complex impedance and Raman spectroscopy of Na0.5(Bi1-xDyx)0.5TiO3 ceramics," Ceram. Int., vol. 46, no. 8, p.10979–10991, Jun. 2020.

DOI: 10.1016/j.ceramint.2020.01.114

Google Scholar

[49] C. Goutham, K. V. Ashok Kumar, S. S. Kumar Raavi, C. Subrahmanyam, and S. Asthana, "Enhanced electrical and photocatalytic activities in Na0.5Bi0.5TiO3 through structural modulation by using anatase and rutile phases of TiO2," J. Mater., no. xxxx, 2021.

DOI: 10.1016/j.jmat.2021.06.003

Google Scholar

[50] M. Benyoussef et al., "Dielectric, ferroelectric, and energy storage properties in dysprosium doped sodium bismuth titanate ceramics," Ceram. Int., vol. 44, no. 16, p.19451–19460, Nov. 2018.

DOI: 10.1016/j.ceramint.2018.07.182

Google Scholar

[51] M. Mesrar, T. Lamcharfi, N. S. Echatoui, F. Abdi, and F. Z. Ahjyaje, "Hydrothermal synthesis of oxide and carbonate powders of (1-x)(na0.5bi0.5)tio3-xbatio3 ceramics," Asian J. Chem., vol. 31, no. 2, p.309–316, 2019.

DOI: 10.14233/AJCHEM.2019.21581

Google Scholar

[52] V. Dorcet, G. Trolliard, and P. Boullay, "Reinvestigation of phase transitions in Na0.5Bi 0.5TiO3 by TEM. Part I: First order rhombohedral to orthorhombic phase transition," Chem. Mater., vol. 20, no. 15, p.5061–5073, Aug. 2008.

DOI: 10.1021/cm8004634

Google Scholar

[53] Y. Hiruma, H. Nagata, and T. Takenaka, "Phase diagrams and electrical properties of (Bi1/2Na 1/2)TiO3-based solid solutions," J. Appl. Phys., vol. 104, no. 12, 2008.

DOI: 10.1063/1.3043588

Google Scholar

[54] M. Mesrar, A. Elbasset, N. S. Echatoui, F. Abdi, and T. Lamcharfi, "Microstructural and high-temperature dielectric, piezoelectric and complex impedance spectroscopic properties of K0.5Bi0.5TiO3 modified NBT-BT lead-free ferroelectric ceramics," Heliyon, vol. 9, no. 4, p. e14761, 2023.

DOI: 10.1016/j.heliyon.2023.e14761

Google Scholar

[55] Y. Li et al., "Phase structure and electrical properties of lead-free (1 − 2x)NBT–xKBT–xBT ceramics," J. Mater. Sci. Mater. Electron., vol. 29, no. 9, p.7851–7856, May 2018.

DOI: 10.1007/s10854-018-8784-y

Google Scholar

[56] M. Mesrar, "DIELECTRIC MEASUREMENTS AND IMPEDANCE SPECTROSCOPY OF Ba-MODIFIED (Na 0.5Bi0.5)TiO₃ PREPARED BY THE HYDROTHERMAL METHOD," Ceram. - Silikaty, vol. 66, no. 3, p.0–0, 2022.

DOI: 10.13168/cs.2022.0039

Google Scholar

[57] N. Wu et al., "Dielectric properties and electromagnetic simulation of molybdenum disulfide and ferric oxide-modified Ti3C2TX MXene hetero-structure for potential microwave absorption," Adv. Compos. Hybrid Mater. 2022 52, vol. 5, no. 2, p.1548–1556, May 2022.

DOI: 10.1007/S42114-022-00490-7

Google Scholar

[58] M. Cernea et al., "Structural, dielectric, and piezoelectric properties of fine-grained NBT-BT 0.11 ceramic derived from gel precursor," J. Eur. Ceram. Soc., vol. 32, no. 10, p.2389–2397, 2012.

DOI: 10.1016/j.jeurceramsoc.2012.02.021

Google Scholar

[59] H. Lemziouka et al., "Structural, dielectric and optical properties of Cu-doped PbTiO3ceramics prepared by sol-gel," Mater. Today Proc., vol. 37, no. xxxx, p.3940–3945, 2020.

DOI: 10.1016/j.matpr.2020.09.094

Google Scholar

[60] M. M. Sidi et al., "High dielectric constant of (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 prepared by the hydrothermal method Effects of different synthesizing methods on the dielectric and piezoelectric properties of (1-x) (Na0.5Bi0.5) TiO3-xBaTiO3 ceramics View project Hydrothermal Synthesis of Oxide and Carbonate Powders of (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 Ceramics View project High dielectric constant of (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 prepared by the hydrothermal method," 2019.

DOI: 10.13171/mjc8319051210mm

Google Scholar

[61] L. H. Omari, S. Sayouri, T. Lamcharfi, and L. Hajji, "Study of dielectric relaxation and diffuseness character of sol-gel derived Pb1−xLax(Fe0.03Ti0.97)O3 ceramics synthesized at lower temperature for modern nano-technological devices," J. Electroceramics, vol. 34, no. 1, p.28–37, Feb. 2015.

DOI: 10.1007/s10832-014-9921-5

Google Scholar

[62] H. Lemziouka, L. H. Omari, R. Moubah, M. Abid, H. Lassri, and S. Sayouri, "Synthesis, structural and dielectric properties of Ce-doped lead lanthanum titanate," Mater. Res. Bull., vol. 92, p.85–89, 2017.

DOI: 10.1016/j.materresbull.2017.04.009

Google Scholar

[63] Y. Park, Y. Zhang, M. Majzoubi, T. Scholehwar, E. Hennig, and K. Uchino, "Improvement of the standard characterization method on k33 mode piezoelectric specimens," Sensors Actuators A Phys., vol. 312, p.112124, Sep. 2020.

DOI: 10.1016/J.SNA.2020.112124

Google Scholar

[64] V. A. Isupov, "Ferroelectric Na 0.5Bi 0.5TiO 3 and K 0.5Bi 0.5TiO 3 perovskites and their solid solutions," Ferroelectrics, vol. 315. p.123–147, 2005.

DOI: 10.1080/001501990910276

Google Scholar

[65] A. R. Paterson et al., "Relaxor-ferroelectric transitions: Sodium bismuth titanate derivatives," MRS Bulletin, vol. 43, no. 8. Cambridge University Press, p.600–606, 01-Aug-2018.

DOI: 10.1557/mrs.2018.156

Google Scholar