[1]
X. Tong Advanced materials and design for electromagnetic interference shielding. CRC Press (2009).
Google Scholar
[2]
L. Chen, C. Ong, C. Neo, V. Varadan and V. Varadan: Microwave electronics: measurement and materials characterization (2005).
DOI: 10.1002/0470020466
Google Scholar
[3]
M. Green, Z. Liu, P. Xiang, Y. Liu, M. Zhou, X. Tan, F. Huang, L. Liu, X. Chen, Doped, conductive SiO2 nanoparticles for large microwave absorption, Light: Science & Applications. 7 (2018) 87.
DOI: 10.1038/s41377-018-0088-8
Google Scholar
[4]
A. Kumar, V. Agarwala, D. Singh, Effect of milling on dielectric and microwave absorption properties of SiC based composites, Ceramics Internationa. 40 (2014) 1797-1806.
DOI: 10.1016/j.ceramint.2013.07.080
Google Scholar
[5]
Y. Li, H.J. Yang, W.G. Yang, Z.L. Hou, J.B. Li, H.B. Jin, J. Yuan c, M.S. Cao, Structure, ferromagnetism and microwave absorption properties of la substituted BiFeO3 nanoparticles. Materials Letters. 111 (2013) 130- 133.
DOI: 10.1016/j.matlet.2013.08.061
Google Scholar
[6]
V. Lebedev, T. Tykhomyrova, I. Litvinenko, S. Avina, Z. Saimbetova, Design and Research of Eco-Friendly Polymer Composites, Materials Science Forum. 1006 (2020) 259–266.
DOI: 10.4028/www.scientific.net/msf.1006.259
Google Scholar
[7]
V. Lebedev, T. Tykhomyrova, O. Filenko, A. Cherkashina, O. Lytvynenko, Sorption Resistance Studying of Environmentally Friendly Polymeric Materials in Different Liquid Mediums, Materials Science Forum. 1038 (2021) 168–174.
DOI: 10.4028/www.scientific.net/msf.1038.168
Google Scholar
[8]
V. Lebedev, T. Tykhomyrova, O. Lytvynenko, A. Grekova, S. Avina, Sorption characteristics studies of eco-friendly polymer composites, E3S Web of Conferences. 280 (2021) 11001.
DOI: 10.1051/e3sconf/202128011001
Google Scholar
[9]
V. Lebedev, D. Miroshnichenko, Z. Xiaobin, S. Pyshyev, D. Savchenko, Technological Properties of Polymers Obtained from Humic Acids of Ukrainian Lignite, Petroleum and Coal. 63(3) (2021) 646-654.
Google Scholar
[10]
H. Wang , L. Wu , J. Jiao , J. Zhou , Y. Xu , H. Zhang , Z. Jiang , B. Shen and Z. Wang, Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires, Journal of Materials Chemistry A. 3 (2015) 6517 —6525.
DOI: 10.1039/c5ta00303b
Google Scholar
[11]
C. Liang , C. Liu , H. Wang , L. Wu , Z. Jiang , Y. Xu , B. Shen and Z. Wang , SiC-Fe3O4 dielectric-magnetic hybrid nanowires: controllable fabrication, characterization and electromagnetic wave absorption, Journal of Materials Chemistry A. 39 (2014) 16397 —16402.
DOI: 10.1039/c4ta02907k
Google Scholar
[12]
G. Lisachuk, R. Kryvobok, V. Voloshchuk, O. Lapuzina, A. Zakharov, Study of Technological Features of Celsian Ceramics Creation, Proceedings of the 2021 IEEE 11th International Conference "Nanomaterials: Applications and Properties", NAP (2021).
DOI: 10.1109/nap51885.2021.9568546
Google Scholar
[13]
R. Lv, F. Kang, J. Gu, X. Gui, J. Wei, K. Wang, D.Wu, Carbon nanotubes filled with ferromagnetic alloy nanowires: lightweight and wide-band microwave absorber, Applied Physics Letters. 93 (2008) 223105.
DOI: 10.1063/1.3042099
Google Scholar
[14]
E. Krenke, M. Duman, E.F. Acet, X. Wassermann, L. Moya, L. Manosa, A. Planes, Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn. Alloys, Nature Materials. 4 (2005) 450-454.
DOI: 10.1038/nmat1395
Google Scholar
[15]
H. Zhang, Y. Xu, J. Zhou, J. Jiao, Y. Chen, H. Wang, C. Liu, Z. Jiang, Z. Wang, Stacking fault and unoccupied densities of state dependence of electromagnetic wave absorption in SiC nanowires, Journal of Materials Chemistry C. 3 (2015) 4416-4423.
DOI: 10.1039/c5tc00405e
Google Scholar
[16]
A. Rassokha, A.Cherkashina, Designing low viscosity furanepoxy polymers of the materials for construction industry, Eastern-European Journal of Enterprise Technologies. 3 (6-81) (2016) 38-44.
DOI: 10.15587/1729-4061.2016.71266
Google Scholar
[17]
A. Cherkashina, I. Lavrova, V. Lebedev, Development of a bitumen-polymer composition, resistant to atmospheric influences, based on petroleum bitumen and their properties study, Materials Science Forum. 1038 (2021) 352-358.
DOI: 10.4028/www.scientific.net/msf.1038.352
Google Scholar
[18]
A. Cherkashina, I. Lavrova, V. Lebedev, T. Tykhomyrova, Design and Research of Bituminous Compositions Modified by Rubber Brittle Waste, Materials Science Forum. 1066 (2021) 183-188.
DOI: 10.4028/p-93135f
Google Scholar
[19]
H. Harada, Y. Inoue, H. Shima, Effect of Water Soluble Potassium Content on the Mechanical Properties of Polyamide 66 Reinforced with PotassiumHexatitanate Fibers, Journal of the Japan Society for Composite Materials. (6) (1996) 225-232.
DOI: 10.6089/jscm.22.225
Google Scholar
[20]
S.C. Tjong, Y.Z. Meng Properties and morphology of polyamide 6 hybrid composites containing potassium titanate whisker and liquid crystalline copolyester, Polymer. 40(5) (1999) 1109-1117.
DOI: 10.1016/s0032-3861(98)00340-1
Google Scholar
[21]
T.W. Kim, S.G. Hur, S.-J. Hwang, J.-H. Choy Layered titanate–zinc oxide nanohybrids with mesoporosity. Chemical Communications. 23 (2006) 220–222.
DOI: 10.1039/b511471c
Google Scholar
[22]
T.W. Kim, S.-J. Hwang, Y. Park, W. Choi, J.H. Choy, Chemical bonding character and physicochemical properties of mesoporous zinc oxide-layered titanate nanocomposites, The Journal of Physical Chemistry C. 111 (2007) 1658–1664.
DOI: 10.1021/jp0662552
Google Scholar
[23]
T.W. Kim, A.R. Han, S.-J. Hwang, J.-H. Choy, Local atomic arrangement and electronic configuration of nanocrystalline zinc oxide hybridized with redoxable 2D lattice of manganese oxide, The Journal of Physical Chemistry C. 111 (2007) 16774–16780.
DOI: 10.1021/jp075858q
Google Scholar
[24]
T .W. Kim, H.-W. Ha, M.-J. Paek, S.H. Hyun, I. Baek, J. Choy, S. Hwang, Mesoporous iron oxide-layered titanate nanohybrids: soft-chemical synthesis, characterization, and photocatalyst application, The Journal of Physical Chemistry C. 112 (2008) 14853–14862.
DOI: 10.1021/jp805488h
Google Scholar
[25]
L. Long, L. Wu, X. Yang, X. Li, Photoelectrochemical Performance of Nb-doped TiO2 Nanoparticles Fabricated by Hydrothermal Treatment of Titanate Nanotubes in Niobium Oxalate Aqueous Solution, Journal of Materials Science & Technology. 30(8) (2014) 765-769.
DOI: 10.1016/j.jmst.2014.03.010
Google Scholar
[26]
V. Lebedev, D. Miroshnichenko, Z. Xiaobin, S. Pyshyev, D. Savchenko, Technological Properties of Polymers Obtained from Humic Acids of Ukrainian Lignite, Petroleum and Coal. 63(3) (2021) 646-654.
Google Scholar
[27]
V. Lebedev, D. Miroshnichenko, Z. Xiaobin, S. Pyshyev, D. Savchenko, Y. Nikolaichuk, Use of Humic Acids from Low-Grade Metamorphism Coal for the Modification of Biofilms Based on Polyvinyl Alcohol, Petroleum and Coal. 63(4) (2021) 953-962.
Google Scholar
[28]
V. Lebedev, R. Kryvobok, A. Cherkashina, A. Bliznyuk, G. Lisachuk, T. Tykhomyrova, Design and research polymer composites for absorption of electromagnetic radiation, Proceedings of the 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek). (2022) 1-4.
DOI: 10.1109/khpiweek57572.2022.9916467
Google Scholar
[29]
V.P. Shaporev, V.V. Sebko, О.V. Shestopalov, Technological conformities to the law of carbros which underlaid production of whiskers inorganic refractory compounds. 1. Synthesis of whiskers during the leadthrough of firmly phase reactions, Visnyk NTU «KhPI» 27 (1070) (2014) 114 – 142. [in Russian].
Google Scholar