Physical and Optical Properties of Lead-Tungsten-Tellurite Glasses

Article Preview

Abstract:

By using the melt quenching approach, a number of tellurite-based heavy metal oxide glasses codoped with varied lead oxide (PbO), (80-x)TeO2-20%WO3-xPbO (x = 5, 10, 15 and 20 mol%) compositions, have been created. By using UV-Vis-IR spectroscopy, forbidden energy gap, Urbach energy, and refractive index were calculated and the contribution of PbO to the glasses structure was investigated. Calculations were also made for physical parameters such as density, molar mass, and oxygen packing density, polaron radius, inter-ionic distance, and molar refraction. The direct and indirect optical band gaps is 3.29 to 3.33 eV and 3.2 to 3.3 eV, respectively. The fact that the nonbridging oxygen ion content rises with increasing PbO content and shifts the band edge to lower frequencies, may be the cause of a drop in the values of the energy band gap Eg.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1097)

Pages:

71-76

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.S. Murugan, E. Fargin, V. Rodriguez, F. Adamietz, M. Couzi, T. Buffeteau, P. Le Coustumer, J. Non-Cryst. Solids 344 (2004) 158–166.

DOI: 10.1016/j.jnoncrysol.2004.06.017

Google Scholar

[2] R.F. Souza, M.A. Alencar, J.M. Hickmann, R. Kobayashi, L.R. Kassab, Appl. Phys. Lett. 89 (2006) 171917.

Google Scholar

[3] Y. Chen, Q. Nie, T. Xu, S. Dai, X. Wang, X. Shen, J. Non-Cryst. Solids 354 (2008)3468-3472.

Google Scholar

[4] T.T. Fernandez, S. Eaton, G. Della Valle, R.M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, P. Laporta, Opt. Express 18 (2010) 20289–20297.

DOI: 10.1364/oe.18.020289

Google Scholar

[5] S. Manning, Ph.D. Dissertation, University of Adelaide, Australia, 2011.

Google Scholar

[6] H. Burger, U. Grunke, I. Gugov, Google Patents, 2003.

Google Scholar

[7] P. Nandi, G. Jose, C. Jayakrishnan, S. Debbarma, K. Chalapathi, K. Alti, A. Dharmadhikari, J. Dharmadhikari, D. Mathur, Opt. Express 14 (2006) 12145–12150.

DOI: 10.1364/oe.14.012145

Google Scholar

[8] E.R. Barney, A.C. Hannon, D. Holland, N. Umesaki, M. Tatsumisago, R.G. Orman, S. Feller, J. Phys. Chem. Lett. 4 (2013) 2312–2316.

DOI: 10.1021/jz4010637

Google Scholar

[9] A. Gulenko, O. Masson, A. Berghout, D. Hamani, P. Thomas, Phys. Chem. Chem. Phys. 16 (2014) 14150–14160.

DOI: 10.1039/c4cp01273a

Google Scholar

[10] R.A. El-Mallawany, Tellurite Glasses Handbook: Physical Properties and Data, CRC press, 2011.

Google Scholar

[11] R. El-Mallawany, Mater. Chem. Phys. 63 (2000) 109–115

Google Scholar

[12] R.P. Kumbhakar, S.K. Dhiman, S.K. Mahajan, G.F. Ansari, Mater. Today: Proc.56 (2022) 1313–1316, https://doi.org/10.1016/ j.matpr.2021.11.319.

Google Scholar

[13] H. Kumari, K. Patel, S.K. Dhiman, S. K. Mahajan, G . F. Ansari, Mater. Today Proc.  2022, 59,1127–1131;.

DOI: 10.1016/j.matpr.2022.03.027

Google Scholar

[14] E. Hecht, Optics, Pearson Education, 2016.

Google Scholar

[15] M. Guignard, J. Zwanziger, J. Non-Cryst. Solids 353 (2007) 1662–1664.

Google Scholar

[16] M. Guignard, L. Albrecht, J. Zwanziger, Chem. Mater. 19 (2007) 286–290.

Google Scholar

[17] M.A. Villegas, J.M. Ferniandez Navarro, J.Eur.Ceram.Soc, 2007.

Google Scholar

[18] S. Bairagi, K.S. Bartwal, S.K. Dhiman, S.K. Mahajan, G. F. Ansari , Materials Today: Proceedings, 2022

DOI: 10.1016/j.matpr.2022.10.192

Google Scholar

[19] R.A. Mallawany, Tellurite glasses handbook, physical properties and data. FL:CRC Press, 2002.

Google Scholar