[1]
B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics, Academic, New York, 1971.
Google Scholar
[2]
Roy, S.K., Singh, S.N., Mukherjee, S.K., & Prasad, K. (2017). Ba0.06(Na1/2Bi1/2)0.94TiO3–Ba(Fe1/2Ta1/2)O3: giant permittivity lead-free ceramics. Journal of Materials Science: Materials in Electronics, 28, 4763-4771.
DOI: 10.1007/s10854-016-6121-x
Google Scholar
[3]
Roy, S.K., Chaudhuri, S., Kotnala, R. K., Singh, D. K., Singh, B. P., Singh, S. N., ... & Prasad, K. (2016). Dielectric and Raman studies of Ba0. 06(Na1/2Bi1/2)0.94TiO3-NaNbO3 ceramics. Materials Science-Poland, 34(2), 437-445.
DOI: 10.1515/msp-2016-0041
Google Scholar
[4]
Roy, S. K., Singh, S. N., Mukherjee, S. K., & Prasad, K. (2019). Structure and dielectric studies of (1-x)Ba0.06(Na0.5Bi0.5)0.94TiO3-xBa(Fe0.5Nb0.5)O3 lead-free ceramics. Processing and Application of Ceramics, 13(4), 418-426.
DOI: 10.2298/pac1904418r
Google Scholar
[5]
Behera, D., & Mukherjee, S. K. (2023). First-principles calculations to investigate structural, optoelectronics, and thermoelectric properties of lead free Cs2GeSnX6 (X= Cl, Br). Materials Science and Engineering: B, 292, 116421.
DOI: 10.1016/j.mseb.2023.116421
Google Scholar
[6]
Behera, D., & Mukherjee, S. K. (2022). Theoretical Investigation of the Lead-Free K2InBiX6 (X= Cl, Br) Double Perovskite Compounds Using Ab Initio Calculation. JETP Letters, 116(8), 537-546.
DOI: 10.1134/s0021364022601944
Google Scholar
[7]
G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, New ferroelectrics of complex composition IV, Sov. Phys. Solid State 2 (1961) 2651.
Google Scholar
[8]
G. O. Jones and P. A. Thomas, "Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3," Acta Crystallographica B, vol. 58, p.168–178, 2002.
Google Scholar
[9]
P. Woodward, "Octahedral tilting in perovskites. I. Geometrical considerations," Acta Crystallographica B, vol. 53, p.32–43, 1997.
Google Scholar
[10]
R. Dittmer, W. Jo, J. Roedel, et al., Nanoscale insight into lead-free BNT-BT-xKNN, Adv. Funct. Mater. 22 (2012) 4208–4215.
DOI: 10.1002/adfm.201200592
Google Scholar
[11]
X.Y. Kang, et al., BNT-based multi-layer ceramic actuator with enhanced temperature stability, J. Alloys Compd. 771 (2019) 541–546.
DOI: 10.1016/j.jallcom.2018.08.311
Google Scholar
[12]
S. Pattipaka, A.R. James, P. Dobbidi, Enhanced dielectric and piezoelectric properties of BNT-KNNG piezoelectric ceramics, J. Alloys Compd. 765 (2019) 1195–1208.
DOI: 10.1016/j.jallcom.2018.06.138
Google Scholar
[13]
G. A. Smolenskii and A. I. Agranovskaya, "Dielectric polarization of a series of compounds of complex composition," Fizika Tverdogo Tela, vol. 1, p.1562–1572, 1959.
Google Scholar
[14]
O. N. Razumovskaya, T. B. Kuleshova, and L. M. Rudkovskaya, "Reactions of formation of BiFeO3, K0.5Bi0.5TiO3, and Na0.5Bi0.5TiO3," Neorganicheskie Materialy [Inorganic Materials], vol. 19, p.113–115, 1983.
Google Scholar
[15]
G. A. Smolensky, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainic, "New ferroelectrics with complex compounds. IV," Fizika Tverdogo Tela, vol. 2, p.2982–2985, 1960.
Google Scholar
[16]
G. A. Smolenskii and A. I. Agranovskaya, "Dielectric polarization of a series of compounds of complex composition," Fizika Tverdogo Tela, vol. 1, p.1562–1572, 1959.
Google Scholar
[17]
C. F. Buhrer, "Some properties of bismuth perovskites," The Journal of Chemical Physics, vol. 36, p.798–803, 1962.
DOI: 10.1063/1.1732613
Google Scholar
[18]
I. P. Pronin, N. N. Parfenova, N. V. Zaitseva, V. A. Isupov, and G. A. Smolenskii, "Phase transitions in solid solutions of sodium bismuth and potassium bismuth titanates," Fizika Tverdogo Tela, vol. 24, p.1060–1062, 1982.
Google Scholar
[19]
A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, "Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems," Japanese Journal of Applied Physics, vol. 38, no. 9, p.5564, 1999.
Google Scholar
[20]
Jones, G. O., Kreisel, J., & Thomas, P. A. (2002). A structural study of the (Na1-xKx)0.5Bi0. 5TiO3 perovskite series as a function of substitution (x) and temperature. Powder diffraction, 17(4), 301-319.
Google Scholar
[21]
Zidani, J., Zannen, M., Hadouchi, M., Alzahrani, H. A., Birks, E., Khemakhem, H., ... & Lahmar, A. (2023). Structural, electrical, and optical properties of lanthanide-doped Na0· 4K0.1Bi0.5TiO3 ceramics. Physica B: Condensed Matter, 653, 414680.
DOI: 10.1016/j.physb.2023.414680
Google Scholar
[22]
Simões, A. Z., Cavalcante, L. S., Moura, F., Longo, E., & Varela, J. A. (2011). Structure, ferroelectric/magnetoelectric properties, and leakage current density of (Bi0. 85Nd0. 15)FeO3 thin films. Journal of alloys and compounds, 509(17), 5326-5335.
DOI: 10.1016/j.jallcom.2011.02.030
Google Scholar
[23]
Parija, B., Rout, S. K., Cavalcante, L. S., Simoes, A. Z., Panigrahi, S., Longo, E., & Batista, N. C. (2012). Structure, microstructure, and dielectric properties of 100-x([Bi. sub. 0.5][Na. sub.0.5])Ti[O. sub.3]-x[SrTi[O.sub.3]] composites. Appl Phys A, 109, 715-723.
DOI: 10.1007/s00339-012-7105-1
Google Scholar
[24]
Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric, and morphology data. Journal of applied crystallography, 44(6), 1272-1276.
DOI: 10.1107/s0021889811038970
Google Scholar
[25]
Siroha, P., Singh, D., Soni, R., & Gangwar, J. (2018, August). Comparative study on the crystallographic representation of transition metal oxide polymorphs nanomaterials using VESTA software: A case study on Fe2O3 and TiO2. In AIP Conference Proceedings (Vol. 2006, No. 1, p.030038). AIP Publishing LLC.
DOI: 10.1063/1.5051294
Google Scholar
[26]
Parija, B., Badapanda, T., Rout, S. K., Cavalcante, L. S., Panigrahi, S., Longo, E., ... & Sinha, T. P. (2013). Morphotropic phase boundary and electrical properties of 1− x[Bi0. 5Na0. 5]TiO3–xBa[Zr0. 25Ti0. 75]O3 lead-free piezoelectric ceramics. Ceramics International, 39(5), 4877-4886.
DOI: 10.1016/j.ceramint.2012.11.080
Google Scholar
[27]
http://en.wikipedia.org/wiki/Cuboctahedron
Google Scholar
[28]
Zhang, Y., Tian, Y., Zhang, Z., Jia, Y., Zhang, B., Jiang, M., ... & Ren, Z. (2022). Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic Gd2MgTiO6 double perovskite oxide. Acta Materialia, 226, 117669.
DOI: 10.1016/j.actamat.2022.117669
Google Scholar
[29]
Rayssi, C., Kossi, S.E., Dhahri, J., & Khirouni, K. (2018). Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca 0.85 Er0.1Ti1− xCo4x/3O3 (0≤ x≤ 0.1). RSC Advances, 8(31), 17139-17150.
DOI: 10.1039/c8ra00794b
Google Scholar
[30]
Tran, V.D.N., Ullah, A., Dinh, T.H., & Lee, J. S. (2016). Effect of Ba Substitution on Dielectric and Piezoelectric Properties of Lead-Free Bi1/2(Na0.82K0.18)1/2TiO3 Ceramics. Journal of Nanoscience and Nanotechnology, 16(8), 8025-8029.
DOI: 10.1166/jnn.2016.12752
Google Scholar
[31]
Srivastava, A., Singh, A.K., Srivastava, O.N., Tewari, H.S., Masood, K.B., & Singh, J. (2020). Magnetic and dielectric properties of La and Ni Co-substituted BiFeO3 nanoceramics. Frontiers in Physics, 8, 282.
DOI: 10.3389/fphy.2020.00282
Google Scholar
[32]
Barick, B.K., Mishra, K.K., Arora, A.K., Choudhary, R.N.P., & Pradhan, D.K. (2011). Impedance and Raman spectroscopic studies of (Na0. 5Bi0. 5)TiO3. Journal of Physics D: Applied Physics, 44(35), 355402.
DOI: 10.1088/0022-3727/44/35/355402
Google Scholar
[33]
Arya, B. B., & Choudhary, R. N. P. (2021). Studies of structural and electrical characteristics of multi-substituted (Bi0.5Na0.5)TiO3 ferroelectric ceramics. Journal of Materials Science: Materials in Electronics, 32, 11547-11567.
DOI: 10.1007/s10854-021-05743-7
Google Scholar
[34]
Li, Y. M., Chen, W., Xu, Q., Zhou, J., Sun, H. J., & Liao, M. S. (2005). Dielectric and Piezoelectric Properties of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-NaNbO3 Lead-Free Ceramics. Journal of Electroceramics, 14, 53-58.
DOI: 10.1016/j.ceramint.2020.06.187
Google Scholar
[35]
Das, R., & Choudhary, R.N.P. (2019). Structure, dielectric and electrical properties of relaxor lead-free double perovskite: Nd2NiMnO6. Processing and Application of Ceramics, 13(1), 1-11.
DOI: 10.2298/pac1901001d
Google Scholar
[36]
Singh, A., Prasad, K., & Prasad, A. (2015). Effects of Sr2+ doping on the electrical properties of (Bi0. 5Na0. 5)0.94Ba0.06TiO3 ceramics. Processing and Application of Ceramics, 9(1), 33-42.
DOI: 10.2298/pac1501033s
Google Scholar
[37]
Tahri, T., Hamdaoui, N., Omri, A., Hcini, S., Beji, L., Dhahri, E., & Es-Souni, M. (2016). Study of electrical and dielectric properties of CaMn0.6 Fe0.4O2.8 perovskite. Journal of Materials Science: Materials in Electronics, 27, 10525-10531.
DOI: 10.1007/s10854-016-5143-8
Google Scholar