Structure, Microstructure, and Dielectric Properties of Bi0.5(Na0.78K0.22)0.5TiO3 Lead-Free Ceramic

Article Preview

Abstract:

In this article, the structural, microstructural, and dielectric properties of Lead- free perovskite ceramic Bi0.5(Na0.78K0.22)0.5TiO3 [BNKT] have been reported. The material was synthesized through the solid-state reaction method. The compound formed is found to have a hexagonal structure, confirmed by XRD analysis of the sample. The microstructural analysis of the compound revealed the polycrystalline nature of the ceramic having quasi-cubic grain morphology with distinct grain boundaries. From the dielectric study, it was found that the dielectric constant increases with temperature and attained maximum value at temperature Tc = 335° C, after which it decreased. The frequency independence of transition temperature (Tc) suggested the classic ferroelectric behaviour of the compound. The broad dielectric peak around transition temperature confirms the relaxor behaviour of the compound as well as diffused phase transition at Tc. The value of the relative permittivity and loss tangent at ambient temperature for 1kHz frequency is 627 and 0.223 respectively. The synthesized material can be utilized for the fabrication of capacitors and energy storage applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1097)

Pages:

91-97

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics, Academic, New York, 1971.

Google Scholar

[2] Roy, S.K., Singh, S.N., Mukherjee, S.K., & Prasad, K. (2017). Ba0.06(Na1/2Bi1/2)0.94TiO3–Ba(Fe1/2Ta1/2)O3: giant permittivity lead-free ceramics. Journal of Materials Science: Materials in Electronics, 28, 4763-4771.

DOI: 10.1007/s10854-016-6121-x

Google Scholar

[3] Roy, S.K., Chaudhuri, S., Kotnala, R. K., Singh, D. K., Singh, B. P., Singh, S. N., ... & Prasad, K. (2016). Dielectric and Raman studies of Ba0. 06(Na1/2Bi1/2)0.94TiO3-NaNbO3 ceramics. Materials Science-Poland, 34(2), 437-445.

DOI: 10.1515/msp-2016-0041

Google Scholar

[4] Roy, S. K., Singh, S. N., Mukherjee, S. K., & Prasad, K. (2019). Structure and dielectric studies of (1-x)Ba0.06(Na0.5Bi0.5)0.94TiO3-xBa(Fe0.5Nb0.5)O3 lead-free ceramics. Processing and Application of Ceramics, 13(4), 418-426.

DOI: 10.2298/pac1904418r

Google Scholar

[5] Behera, D., & Mukherjee, S. K. (2023). First-principles calculations to investigate structural, optoelectronics, and thermoelectric properties of lead free Cs2GeSnX6 (X= Cl, Br). Materials Science and Engineering: B, 292, 116421.

DOI: 10.1016/j.mseb.2023.116421

Google Scholar

[6] Behera, D., & Mukherjee, S. K. (2022). Theoretical Investigation of the Lead-Free K2InBiX6 (X= Cl, Br) Double Perovskite Compounds Using Ab Initio Calculation. JETP Letters, 116(8), 537-546.

DOI: 10.1134/s0021364022601944

Google Scholar

[7] G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, New ferroelectrics of complex composition IV, Sov. Phys. Solid State 2 (1961) 2651.

Google Scholar

[8] G. O. Jones and P. A. Thomas, "Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3," Acta Crystallographica B, vol. 58, p.168–178, 2002.

Google Scholar

[9] P. Woodward, "Octahedral tilting in perovskites. I. Geometrical considerations," Acta Crystallographica B, vol. 53, p.32–43, 1997.

Google Scholar

[10] R. Dittmer, W. Jo, J. Roedel, et al., Nanoscale insight into lead-free BNT-BT-xKNN, Adv. Funct. Mater. 22 (2012) 4208–4215.

DOI: 10.1002/adfm.201200592

Google Scholar

[11] X.Y. Kang, et al., BNT-based multi-layer ceramic actuator with enhanced temperature stability, J. Alloys Compd. 771 (2019) 541–546.

DOI: 10.1016/j.jallcom.2018.08.311

Google Scholar

[12] S. Pattipaka, A.R. James, P. Dobbidi, Enhanced dielectric and piezoelectric properties of BNT-KNNG piezoelectric ceramics, J. Alloys Compd. 765 (2019) 1195–1208.

DOI: 10.1016/j.jallcom.2018.06.138

Google Scholar

[13] G. A. Smolenskii and A. I. Agranovskaya, "Dielectric polarization of a series of compounds of complex composition," Fizika Tverdogo Tela, vol. 1, p.1562–1572, 1959.

Google Scholar

[14] O. N. Razumovskaya, T. B. Kuleshova, and L. M. Rudkovskaya, "Reactions of formation of BiFeO3, K0.5Bi0.5TiO3, and Na0.5Bi0.5TiO3," Neorganicheskie Materialy [Inorganic Materials], vol. 19, p.113–115, 1983.

Google Scholar

[15] G. A. Smolensky, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainic, "New ferroelectrics with complex compounds. IV," Fizika Tverdogo Tela, vol. 2, p.2982–2985, 1960.

Google Scholar

[16] G. A. Smolenskii and A. I. Agranovskaya, "Dielectric polarization of a series of compounds of complex composition," Fizika Tverdogo Tela, vol. 1, p.1562–1572, 1959.

Google Scholar

[17] C. F. Buhrer, "Some properties of bismuth perovskites," The Journal of Chemical Physics, vol. 36, p.798–803, 1962.

DOI: 10.1063/1.1732613

Google Scholar

[18] I. P. Pronin, N. N. Parfenova, N. V. Zaitseva, V. A. Isupov, and G. A. Smolenskii, "Phase transitions in solid solutions of sodium bismuth and potassium bismuth titanates," Fizika Tverdogo Tela, vol. 24, p.1060–1062, 1982.

Google Scholar

[19] A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, "Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems," Japanese Journal of Applied Physics, vol. 38, no. 9, p.5564, 1999.

Google Scholar

[20] Jones, G. O., Kreisel, J., & Thomas, P. A. (2002). A structural study of the (Na1-xKx)0.5Bi0. 5TiO3 perovskite series as a function of substitution (x) and temperature. Powder diffraction, 17(4), 301-319.

Google Scholar

[21] Zidani, J., Zannen, M., Hadouchi, M., Alzahrani, H. A., Birks, E., Khemakhem, H., ... & Lahmar, A. (2023). Structural, electrical, and optical properties of lanthanide-doped Na0· 4K0.1Bi0.5TiO3 ceramics. Physica B: Condensed Matter, 653, 414680.

DOI: 10.1016/j.physb.2023.414680

Google Scholar

[22] Simões, A. Z., Cavalcante, L. S., Moura, F., Longo, E., & Varela, J. A. (2011). Structure, ferroelectric/magnetoelectric properties, and leakage current density of (Bi0. 85Nd0. 15)FeO3 thin films. Journal of alloys and compounds, 509(17), 5326-5335.

DOI: 10.1016/j.jallcom.2011.02.030

Google Scholar

[23] Parija, B., Rout, S. K., Cavalcante, L. S., Simoes, A. Z., Panigrahi, S., Longo, E., & Batista, N. C. (2012). Structure, microstructure, and dielectric properties of 100-x([Bi. sub. 0.5][Na. sub.0.5])Ti[O. sub.3]-x[SrTi[O.sub.3]] composites. Appl Phys A, 109, 715-723.

DOI: 10.1007/s00339-012-7105-1

Google Scholar

[24] Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric, and morphology data. Journal of applied crystallography, 44(6), 1272-1276.

DOI: 10.1107/s0021889811038970

Google Scholar

[25] Siroha, P., Singh, D., Soni, R., & Gangwar, J. (2018, August). Comparative study on the crystallographic representation of transition metal oxide polymorphs nanomaterials using VESTA software: A case study on Fe2O3 and TiO2. In AIP Conference Proceedings (Vol. 2006, No. 1, p.030038). AIP Publishing LLC.

DOI: 10.1063/1.5051294

Google Scholar

[26] Parija, B., Badapanda, T., Rout, S. K., Cavalcante, L. S., Panigrahi, S., Longo, E., ... & Sinha, T. P. (2013). Morphotropic phase boundary and electrical properties of 1− x[Bi0. 5Na0. 5]TiO3–xBa[Zr0. 25Ti0. 75]O3 lead-free piezoelectric ceramics. Ceramics International, 39(5), 4877-4886.

DOI: 10.1016/j.ceramint.2012.11.080

Google Scholar

[27] http://en.wikipedia.org/wiki/Cuboctahedron

Google Scholar

[28] Zhang, Y., Tian, Y., Zhang, Z., Jia, Y., Zhang, B., Jiang, M., ... & Ren, Z. (2022). Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic Gd2MgTiO6 double perovskite oxide. Acta Materialia, 226, 117669.

DOI: 10.1016/j.actamat.2022.117669

Google Scholar

[29] Rayssi, C., Kossi, S.E., Dhahri, J., & Khirouni, K. (2018). Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca 0.85 Er0.1Ti1− xCo4x/3O3 (0≤ x≤ 0.1). RSC Advances, 8(31), 17139-17150.

DOI: 10.1039/c8ra00794b

Google Scholar

[30] Tran, V.D.N., Ullah, A., Dinh, T.H., & Lee, J. S. (2016). Effect of Ba Substitution on Dielectric and Piezoelectric Properties of Lead-Free Bi1/2(Na0.82K0.18)1/2TiO3 Ceramics. Journal of Nanoscience and Nanotechnology, 16(8), 8025-8029.

DOI: 10.1166/jnn.2016.12752

Google Scholar

[31] Srivastava, A., Singh, A.K., Srivastava, O.N., Tewari, H.S., Masood, K.B., & Singh, J. (2020). Magnetic and dielectric properties of La and Ni Co-substituted BiFeO3 nanoceramics. Frontiers in Physics, 8, 282.

DOI: 10.3389/fphy.2020.00282

Google Scholar

[32] Barick, B.K., Mishra, K.K., Arora, A.K., Choudhary, R.N.P., & Pradhan, D.K. (2011). Impedance and Raman spectroscopic studies of (Na0. 5Bi0. 5)TiO3. Journal of Physics D: Applied Physics, 44(35), 355402.

DOI: 10.1088/0022-3727/44/35/355402

Google Scholar

[33] Arya, B. B., & Choudhary, R. N. P. (2021). Studies of structural and electrical characteristics of multi-substituted (Bi0.5Na0.5)TiO3 ferroelectric ceramics. Journal of Materials Science: Materials in Electronics, 32, 11547-11567.

DOI: 10.1007/s10854-021-05743-7

Google Scholar

[34] Li, Y. M., Chen, W., Xu, Q., Zhou, J., Sun, H. J., & Liao, M. S. (2005). Dielectric and Piezoelectric Properties of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-NaNbO3 Lead-Free Ceramics. Journal of Electroceramics, 14, 53-58.

DOI: 10.1016/j.ceramint.2020.06.187

Google Scholar

[35] Das, R., & Choudhary, R.N.P. (2019). Structure, dielectric and electrical properties of relaxor lead-free double perovskite: Nd2NiMnO6. Processing and Application of Ceramics, 13(1), 1-11.

DOI: 10.2298/pac1901001d

Google Scholar

[36] Singh, A., Prasad, K., & Prasad, A. (2015). Effects of Sr2+ doping on the electrical properties of (Bi0. 5Na0. 5)0.94Ba0.06TiO3 ceramics. Processing and Application of Ceramics, 9(1), 33-42.

DOI: 10.2298/pac1501033s

Google Scholar

[37] Tahri, T., Hamdaoui, N., Omri, A., Hcini, S., Beji, L., Dhahri, E., & Es-Souni, M. (2016). Study of electrical and dielectric properties of CaMn0.6 Fe0.4O2.8 perovskite. Journal of Materials Science: Materials in Electronics, 27, 10525-10531.

DOI: 10.1007/s10854-016-5143-8

Google Scholar