Dielectric and Mechanical Properties of PZT Incorporated PVDF Nanocomposites Prepared by Solution Casting Method

Article Preview

Abstract:

Piezoelectric ceramics possess very high piezoelectric coefficients but lacks the conformability for using them in flexible devices, in high-resolution sensing devices that can be integrated to human skin and other such applications. This problem can be resolved by blending them in appropriate proportion with polymers which are intrinsically light weight, stable and flexible. In this paper polymer composites xPZT– (1-x) PVDF (x= 0, 0.025, 0.05, 0.10, 0.15, 0.20 and 0.25) were prepared by solution casting method and their dielectric and its mechanical properties were studied. Given that PZT has a very high dielectric value, the composite's dielectric constant grew as the filler concentration increased which shows better dipole alignment in the composite. With an increase in filler concentration, the composite loses flexibility and tensile strength. Due to their greater Young's modulus than pure PVDF film, the films with compositions x=0.025 and x=0.05 could have better piezoelectric characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1097)

Pages:

107-113

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wu, Y., Qu, J., Daoud, W. A., Wang, L., & Qi, T. (2019). Flexible composite-nanofiber based piezo-triboelectric nanogenerators for wearable electronics. Journal of Materials Chemistry A, 7(21), 13347-13355.

DOI: 10.1039/c9ta02345c

Google Scholar

[2] Liu, H., Zhong, J., Lee, C., Lee, S. W., & Lin, L. (2018). A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 5(4), 041306.

DOI: 10.1063/1.5074184

Google Scholar

[3] Thakur, V. K., & Gupta, R. K. (2016). Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chemical reviews, 116(7), 4260-4317.

DOI: 10.1021/acs.chemrev.5b00495

Google Scholar

[4] Surmenev, R. A., Orlova, T., Chernozem, R. V., Ivanova, A. A., Bartasyte, A., Mathur, S., & Surmeneva, M. A. (2019). Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: A review. Nano Energy, 62, 475-506.

DOI: 10.1016/j.nanoen.2019.04.090

Google Scholar

[5] Mohammadi, B., Yousefi, A. A., & Bellah, S. M. (2007). Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polymer testing, 26(1), 42-50.

DOI: 10.1016/j.polymertesting.2006.08.003

Google Scholar

[6] Martins, P., Nunes, J. S., Hungerford, G., Miranda, D., Ferreira, A., Sencadas, V., & Lanceros-Méndez, S. (2009). Local variation of the dielectric properties of poly (vinylidene fluoride) during the α-to β-phase transformation. Physics Letters A, 373(2), 177-180.

DOI: 10.1016/j.physleta.2008.11.026

Google Scholar

[7] Costa, P. M. F. J., Silva, J., Sencadas, V., Costa, C. M., Van Hattum, F. W. J., Rocha, J. G., & Lanceros-Méndez, S. (2009). The effect of fibre concentration on the α to β-phase transformation, degree of crystallinity and electrical properties of vapour grown carbon nanofibre/poly (vinylidene fluoride) composites. Carbon, 47(11), 2590-2599.

DOI: 10.1016/j.carbon.2009.05.011

Google Scholar

[8] Lovinger, A. J. (1982). Developments in crystalline polymers. Applied Science, London, 1, 195-273.

Google Scholar

[9] Kang, H. B., Han, C. S., Pyun, J. C., Ryu, W. H., Kang, C. Y., & Cho, Y. S. (2015). (Na, K) NbO3 nanoparticle-embedded piezoelectric nanofiber composites for flexible nanogenerators. Composites Science and Technology, 111, 1-8.

DOI: 10.1016/j.compscitech.2015.02.015

Google Scholar

[10] Chamankar, N., Khajavi, R., Yousefi, A. A., Rashidi, A., & Golestanifard, F. (2020). A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications. Ceramics International, 46(12), 19669-19681.

DOI: 10.1016/j.ceramint.2020.03.210

Google Scholar

[11] G. Tian, W.L. Deng, Y.Y. Gao, D. Xiong, C. Yan, X.B. He, T. Yang, L. Jin, X. Chu, H.T. Zhang, W. Yan, W.Q. Yang, Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training, Nano Energy, 59 (2019) 574-581.

DOI: 10.1016/j.nanoen.2019.03.013

Google Scholar

[12] Gupta, S., Bhunia, R., Fatma, B., Maurya, D., Singh, D., Prateek, ... & Garg, A. (2019). Multifunctional and flexible polymeric nanocomposite films with improved ferroelectric and piezoelectric properties for energy generation devices. ACS Applied Energy Materials, 2(9), 6364-6374.

DOI: 10.1021/acsaem.9b01000

Google Scholar

[13] Z. M. Dang, D. Xie, and C. Y. Sh, Theoretical prediction and experimental study of dielectric properties in poly (vinylidene fluoride) matrix composites with micro nano size BaTiO3 filler, Appl. Phys. Lett. 91 (22), 222902 (2007).

DOI: 10.1063/1.2807844

Google Scholar

[14] Yun, J. S., Park, C. K., Jeong, Y. H., Cho, J. H., Paik, J. H., Yoon, S. H., & Hwang, K. R. (2016). The fabrication and characterization of piezoelectric PZT/PVDF electrospun nanofiber composites. Nanomaterials and Nanotechnology, 6, 20

DOI: 10.5772/62433

Google Scholar

[15] Bai, Y., Cheng, Z. Y., Bharti, V., Xu, H. S., & Zhang, Q. M. (2000). High-dielectric-constant ceramic-powder polymer composites. Applied Physics Letters, 76(25), 3804-3806

DOI: 10.1063/1.126787

Google Scholar

[16] Ranjan, H., Mahto, U. K., Chandra, K. P., Kulkarni, A. R., Prasad, A., & Prasad, K. (2017). Electrical and magnetic properties of 0–3 Ba (Fe 1∕ 2 Nb 1∕ 2) O3/PVDF composites. Journal of Advanced Dielectrics, 7(06), 1750036.

DOI: 10.1142/s2010135x17500369

Google Scholar

[17] Nielsen, L. E. (1966). Simple theory of stress‐strain properties of filled polymers. Journal of Applied Polymer Science, 10(1), 97-103.

DOI: 10.1002/app.1966.070100107

Google Scholar

[18] Singh, P., Borkar, H., Singh, B. P., Singh, V. N., & Kumar, A. (2014). Ferroelectric polymer-ceramic composite thick films for energy storage applications. AIP advances, 4(8), 087117.

DOI: 10.1063/1.4892961

Google Scholar

[19] Firmino Mendes, S., Costa, C. M., Sencadas, V., Serrado Nunes, J., Costa, P., Grégório, R., & Lanceros-Méndez, S. (2009). Effect of the ceramic grain size and concentration on the dynamical mechanical and dielectric behavior of poly (vinilidene fluoride)/Pb (Zr 0.53 Ti 0.47) O 3 composites. Applied Physics A, 96, 899-908.

DOI: 10.1007/s00339-009-5141-2

Google Scholar