[1]
Wu, Y., Qu, J., Daoud, W. A., Wang, L., & Qi, T. (2019). Flexible composite-nanofiber based piezo-triboelectric nanogenerators for wearable electronics. Journal of Materials Chemistry A, 7(21), 13347-13355.
DOI: 10.1039/c9ta02345c
Google Scholar
[2]
Liu, H., Zhong, J., Lee, C., Lee, S. W., & Lin, L. (2018). A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 5(4), 041306.
DOI: 10.1063/1.5074184
Google Scholar
[3]
Thakur, V. K., & Gupta, R. K. (2016). Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chemical reviews, 116(7), 4260-4317.
DOI: 10.1021/acs.chemrev.5b00495
Google Scholar
[4]
Surmenev, R. A., Orlova, T., Chernozem, R. V., Ivanova, A. A., Bartasyte, A., Mathur, S., & Surmeneva, M. A. (2019). Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: A review. Nano Energy, 62, 475-506.
DOI: 10.1016/j.nanoen.2019.04.090
Google Scholar
[5]
Mohammadi, B., Yousefi, A. A., & Bellah, S. M. (2007). Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polymer testing, 26(1), 42-50.
DOI: 10.1016/j.polymertesting.2006.08.003
Google Scholar
[6]
Martins, P., Nunes, J. S., Hungerford, G., Miranda, D., Ferreira, A., Sencadas, V., & Lanceros-Méndez, S. (2009). Local variation of the dielectric properties of poly (vinylidene fluoride) during the α-to β-phase transformation. Physics Letters A, 373(2), 177-180.
DOI: 10.1016/j.physleta.2008.11.026
Google Scholar
[7]
Costa, P. M. F. J., Silva, J., Sencadas, V., Costa, C. M., Van Hattum, F. W. J., Rocha, J. G., & Lanceros-Méndez, S. (2009). The effect of fibre concentration on the α to β-phase transformation, degree of crystallinity and electrical properties of vapour grown carbon nanofibre/poly (vinylidene fluoride) composites. Carbon, 47(11), 2590-2599.
DOI: 10.1016/j.carbon.2009.05.011
Google Scholar
[8]
Lovinger, A. J. (1982). Developments in crystalline polymers. Applied Science, London, 1, 195-273.
Google Scholar
[9]
Kang, H. B., Han, C. S., Pyun, J. C., Ryu, W. H., Kang, C. Y., & Cho, Y. S. (2015). (Na, K) NbO3 nanoparticle-embedded piezoelectric nanofiber composites for flexible nanogenerators. Composites Science and Technology, 111, 1-8.
DOI: 10.1016/j.compscitech.2015.02.015
Google Scholar
[10]
Chamankar, N., Khajavi, R., Yousefi, A. A., Rashidi, A., & Golestanifard, F. (2020). A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications. Ceramics International, 46(12), 19669-19681.
DOI: 10.1016/j.ceramint.2020.03.210
Google Scholar
[11]
G. Tian, W.L. Deng, Y.Y. Gao, D. Xiong, C. Yan, X.B. He, T. Yang, L. Jin, X. Chu, H.T. Zhang, W. Yan, W.Q. Yang, Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training, Nano Energy, 59 (2019) 574-581.
DOI: 10.1016/j.nanoen.2019.03.013
Google Scholar
[12]
Gupta, S., Bhunia, R., Fatma, B., Maurya, D., Singh, D., Prateek, ... & Garg, A. (2019). Multifunctional and flexible polymeric nanocomposite films with improved ferroelectric and piezoelectric properties for energy generation devices. ACS Applied Energy Materials, 2(9), 6364-6374.
DOI: 10.1021/acsaem.9b01000
Google Scholar
[13]
Z. M. Dang, D. Xie, and C. Y. Sh, Theoretical prediction and experimental study of dielectric properties in poly (vinylidene fluoride) matrix composites with micro nano size BaTiO3 filler, Appl. Phys. Lett. 91 (22), 222902 (2007).
DOI: 10.1063/1.2807844
Google Scholar
[14]
Yun, J. S., Park, C. K., Jeong, Y. H., Cho, J. H., Paik, J. H., Yoon, S. H., & Hwang, K. R. (2016). The fabrication and characterization of piezoelectric PZT/PVDF electrospun nanofiber composites. Nanomaterials and Nanotechnology, 6, 20
DOI: 10.5772/62433
Google Scholar
[15]
Bai, Y., Cheng, Z. Y., Bharti, V., Xu, H. S., & Zhang, Q. M. (2000). High-dielectric-constant ceramic-powder polymer composites. Applied Physics Letters, 76(25), 3804-3806
DOI: 10.1063/1.126787
Google Scholar
[16]
Ranjan, H., Mahto, U. K., Chandra, K. P., Kulkarni, A. R., Prasad, A., & Prasad, K. (2017). Electrical and magnetic properties of 0–3 Ba (Fe 1∕ 2 Nb 1∕ 2) O3/PVDF composites. Journal of Advanced Dielectrics, 7(06), 1750036.
DOI: 10.1142/s2010135x17500369
Google Scholar
[17]
Nielsen, L. E. (1966). Simple theory of stress‐strain properties of filled polymers. Journal of Applied Polymer Science, 10(1), 97-103.
DOI: 10.1002/app.1966.070100107
Google Scholar
[18]
Singh, P., Borkar, H., Singh, B. P., Singh, V. N., & Kumar, A. (2014). Ferroelectric polymer-ceramic composite thick films for energy storage applications. AIP advances, 4(8), 087117.
DOI: 10.1063/1.4892961
Google Scholar
[19]
Firmino Mendes, S., Costa, C. M., Sencadas, V., Serrado Nunes, J., Costa, P., Grégório, R., & Lanceros-Méndez, S. (2009). Effect of the ceramic grain size and concentration on the dynamical mechanical and dielectric behavior of poly (vinilidene fluoride)/Pb (Zr 0.53 Ti 0.47) O 3 composites. Applied Physics A, 96, 899-908.
DOI: 10.1007/s00339-009-5141-2
Google Scholar