Thermoresponsive Shape Memory Polymer Based on Polylactic Acid/Styrene-Butadiene-Styrene Blends with Different Inorganic Metal Fillers

Article Preview

Abstract:

In this study, polylactic acid (PLA) blended with 30 wt% styrene-butadiene-styrene (SBS) (70PLA/30SBS) was added with different fillers; Erbium Oxide (Er2O3), Halloysite Nanotubes (HNT) and Tungsten Carbide (WC2) to investigate the effect of the filler on the shape fixity (Rf) and shape recovery (Rr) at different deformation and recovery times, rheological and morphological properties. The tubular structure of HNT led to the reduction of Rf when immersed longer during the deformation phase. Meanwhile, the presence of Er2O3 improved the Rr and Rr with longer deformation and recovery times, respectively. The blend with HNT has the highest viscosity while the blend with 70PLA/30SBS-Er2O3 indicated lower viscosity than the unfilled blend. All filled blends indicated the sea-island structure with the SBS droplets in PLA continuous phase. The elements identification made on the surface of the samples illustrates that the fillers were well-distributed in 70PLA/30SBS blends. The insignificant improvement of shape memory in the presence of the thermal conductive fillers due to the dominance of the restriction of chain motion due to the presence of fillers compared with increment of thermal conductivity at low filler loading.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1102)

Pages:

11-19

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Purwar and R. Sachan, Thermoresponsive shape memory polymers for smart textiles. LTD, 2020.

DOI: 10.1016/b978-0-12-820257-9.00003-5

Google Scholar

[2] W. Shen, W. Wu, C. Liu, Y. Wang, and X. Zhang, "Thermal conductivity enhancement of PLA/TPU/BN composites by controlling BN distribution and annealing treatment," Plast. Rubber Compos., vol. 49, no. 5, p.204–213, 2020.

DOI: 10.1080/14658011.2020.1729657

Google Scholar

[3] H. Chen et al., "Thermal conductivity of polymer-based composites: Fundamentals and applications," Prog. Polym. Sci., vol. 59, p.41–85, 2016.

DOI: 10.1016/j.progpolymsci.2016.03.001

Google Scholar

[4] M. Lei, Z. Chen, H. Lu, and K. Yu, "Recent progress in shape memory polymer composites: Methods, properties, applications and prospects," Nanotechnol. Rev., vol. 8, p.327–351, 2019.

DOI: 10.1515/ntrev-2019-0031

Google Scholar

[5] J. Jiang, S. Yang, L. Li, and S. Bai, "High thermal conductivity polylactic acid composite for 3D printing: Synergistic effect of graphene and alumina," Polym. Adv. Technol., p.1–9, 2020.

DOI: 10.1002/pat.4858

Google Scholar

[6] Z. Lule, J. Yang, and J. Kim, "A Study on the Thermal Conductivity of Poly(lactic acid)/Alumina Composites: The Effect of the Filler Treatment," J. Nanosci. Nanotechnol., vol. 20, no. 1, p.229–238, 2019.

DOI: 10.1166/jnn.2020.17260

Google Scholar

[7] Y. Du et al., "Flexible n-type tungsten carbide/polylactic acid thermoelectric composites fabricated by additive manufacturing," Coatings, vol. 8, no. 1, 2018.

DOI: 10.3390/coatings8010025

Google Scholar

[8] M. Murariu and P. Dubois, "PLA composites: From production to properties," Adv. Drug Deliv. Rev., vol. 107, p.17–46, 2016.

DOI: 10.1016/j.addr.2016.04.003

Google Scholar

[9] R. Umamaheswari, S. Manavalan, S. M. Chen, S. Chinnapaiyan, T. W. Chen, and R. Jothi Ramalingam, "Facile synthesis and characterization of erbium oxide (Er2O3) nanospheres embellished on reduced graphene oxide nanomatrix for trace-level detection of a hazardous pollutant causing Methemoglobinaemia," Ultrason. Sonochem., vol. 56, no. January, p.422–429, 2019.

DOI: 10.1016/j.ultsonch.2019.02.023

Google Scholar

[10] S. S. Nafee, T. A. Hamdalla, and A. A. A. Darwish, "Studies of the morphology and optical properties of nano erbium oxide embedded in PMMA matrix," Opt. Laser Technol., vol. 129, no. April, p.106282, 2020.

DOI: 10.1016/j.optlastec.2020.106282

Google Scholar

[11] M. N. Alghamdi, "Thermoplastic composite system using polymer blend and fillers," J. King Saud Univ. - Eng. Sci., no. xxxx, 2021.

DOI: 10.1016/j.jksues.2020.12.009

Google Scholar

[12] N. F. Alias, H. Ismail, and M. K. A. Wahab, "Properties of polyvinyl alcohol/palm kernel shell powder biocomposites and their hybrid composites with halloysite nanotubes," BioResources, vol. 12, no. 4, p.9103–9117, 2017.

DOI: 10.15376/biores.12.4.9013-9117

Google Scholar

[13] K. Majeed, M. Al Ali AlMaadeed, and M. M. Zagho, "Comparison of the effect of carbon, halloysite and titania nanotubes on the mechanical and thermal properties of LDPE based nanocomposite films," Chinese J. Chem. Eng., vol. 26, no. 2, p.428–435, 2018.

DOI: 10.1016/j.cjche.2017.09.017

Google Scholar

[14] F. H. Azizul Rahim et al., "Thermo-responsive shape memory properties based on polylactic acid and styrene-butadiene-styrene block copolymer," J. Appl. Polym. Sci., vol. 138, no. 39, p.51000, May 2021.

DOI: 10.1002/app.51000

Google Scholar

[15] F. H. Azizul Rahim and A. Rusli, "Rheological and thermoresponsive shape memory properties of polylactic acid (PLA) and styrene-butadiene-styrene (SBS) copolymer blends," J. Polym. Res., vol. 29, no. 11, 2022.

DOI: 10.1007/s10965-022-03296-9

Google Scholar

[16] F. H. A. Rahim and A. Rusli, "Rheological and Thermoresponsive Shape Memory Properties of Polylactic Acid (PLA) and Styrene-Butadiene-Styrene (SBS) Copolymer Blends," J. Polym. Res., no. 11/2022, 2022.

DOI: 10.1007/s10965-022-03296-9

Google Scholar

[17] M. Kim, S. Jang, S. Choi, J. Yang, J. Kim, and D. Choi, "Analysis of shape memory behavior and mechanical properties of shape memory polymer composites using thermal conductive fillers," Micromachines, vol. 12, no. 9, 2021.

DOI: 10.3390/mi12091107

Google Scholar

[18] C. M. Yakacki, N. S. Satarkar, K. Gall, R. Likos, and J. Z. Hilt, "Shape-Memory Polymer Networks with Fe3O4 Nanoparticles for Remote Activation," J. Appl. Polym. Sci., vol. 112, p.3166–3176, 2009.

DOI: 10.1002/app.29845

Google Scholar

[19] N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, and D. Ruch, "Review of thermal conductivity in composites: Mechanisms, parameters and theory," Prog. Polym. Sci., vol. 61, p.1–28, 2016.

DOI: 10.1016/j.progpolymsci.2016.05.001

Google Scholar

[20] A. Amirkiai et al., "Microstructural design for enhanced mechanical and shape memory performance of polyurethane nanocomposites: Role of hybrid nanofillers of montmorillonite and halloysite nanotube," Appl. Clay Sci., vol. 198, no. June, p.105816, 2020.

DOI: 10.1016/j.clay.2020.105816

Google Scholar

[21] K. Kornaus, A. Gubernat, D. Zientara, P. Rutkowski, and L. Stobierski, "Mechanical and thermal properties of tungsten carbide-graphite nanoparticles nanocomposites," Polish J. Chem. Technol., vol. 18, no. 2, p.84–88, 2016.

DOI: 10.1515/pjct-2016-0033

Google Scholar

[22] P. R. Kubade, P. Tambe, and H. B. Kulkarni, "Morphological, thermal and mechanical properties of 90/10 (WT %/ WT %) PP/ABS blends and their polymer nanocomposites," Adv. Compos. Lett., vol. 26, no. 6, p.182–188, 2017.

DOI: 10.1177/096369351702600602

Google Scholar

[23] N. F. Alias and H. Ismail, "Effects of Partial Replacement of Eggshell Powder by Halloysite Nanotubes on the Properties of Polyvinyl Alcohol Composites," IOP Conf. Ser. Mater. Sci. Eng., vol. 374, no. 1, 2018.

DOI: 10.1088/1757-899X/374/1/012032

Google Scholar

[24] J. Plattier, L. Benyahia, M. Dorget, F. Niepceron, and J. F. Tassin, "Viscosity-induced filler localisation in immiscible polymer blends," Polymer (Guildf)., vol. 59, p.260–269, 2015.

DOI: 10.1016/j.polymer.2014.12.044

Google Scholar

[25] F. Fenouillot, P. Cassagnau, and J. C. Majesté, "Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends," Polymer (Guildf)., vol. 50, no. 6, p.1333–1350, 2009.

DOI: 10.1016/j.polymer.2008.12.029

Google Scholar

[26] M. Johar, K. Z. Zarkasi, F. Hashim, and A. Rusli, "Thermal, mechanical, rheological and morphological properties of compatible poly(lactic acid)/ethylene vinyl acetate blends," Prog. Rubber, Plast. Recycl. Technol., vol. 38, no. 2, p.172–187, Apr. 2022.

DOI: 10.1177/14777606221085988

Google Scholar

[27] M. F. Brigatti, E. Galán, and B. K. G. Theng, Structure and Mineralogy of Clay Minerals, vol. 5. 2013.

Google Scholar