Boiling Temperature and Particle Size Effect on the Tensile Strength of Rice Straw-Based Biomaterials

Article Preview

Abstract:

The particle size of the rice straw and boiling duration play an essential role in the applicability of this material. They affect the rice straw’s mechanical properties, which is one of the critical parameters in bio-based material development. In order to have a clear insight into the effect, rice straw particle materials form without a hot press machine route to avoid bias due to the material response to the pressure and heat transfer effect. The rice straw particle incorporates corn starch as a bio-adhesive with an equal composition ratio. It turns out that finer particle sizes (mesh 60 and 40) achieve higher tensile strength compared to mesh 18 particles. The optimum boiling duration is two hours. Longer boiling times reduce the mechanical properties of rice straw particle-based materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1102)

Pages:

27-32

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Xie, B. Cui, S. Hao, S. Li, X. Jia, and W. Wang, Composites Science and Technology, 230, 109728 (2022).

Google Scholar

[2] S.H. Lee, W.C. Lum, J.G. Boon, L. Kristak, P. Antov, M. Pędzik, T. Rogoziński, H.R. Taghiyari, M.A.R. Lubis, W. Fatriasari, S.M. Yadav, A. Chotikhun, and A. Pizzi, Journal of Materials Research and Technology, 20, 4630–4658 (2022).

DOI: 10.1016/j.jmrt.2022.08.166

Google Scholar

[3] G. Singh and S.K. Arya, Journal of Cleaner Production, 291, 125278 (2021).

Google Scholar

[4] R. Khandanlou, M.B. Ahmad, K. Shameli, M.Z. Hussein, N. Zainuddin, and K. Kalantari, Res Chem Intermed, 41, 6371–6384 (2015).

DOI: 10.1007/s11164-014-1746-y

Google Scholar

[5] D. Kaur, N.K. Bhardwaj, and R.K. Lohchab, Waste Management, 60, 127–139 (2017).

Google Scholar

[6] S. Hu, J. Gu, F. Jiang, and Y.-L. Hsieh, ACS Sustainable Chem. Eng., 4, 728–737 (2016).

Google Scholar

[7] S. Halvarsson, H. Edlund, and M. Norgren, Ind. Eng. Chem. Res., 49, 1428–1435 (2010).

Google Scholar

[8] A.C.F. Louis, S. Venkatachalam, and S. Gupta, Industrial Crops and Products, 179, 114695 (2022).

Google Scholar

[9] N.A.M. Razali, W.M.H.W. Ya'acob, R.A.A. Rusdi, and F.A. Aziz, Materials Science Forum, 888, 244–247 (2017).

Google Scholar

[10] T. Chiranjeevi, S. Jose, B. Ramachandrarao, and H. Ravindra Velankar, Energy Fuels, 34, 7170–7182 (2020).

DOI: 10.1021/acs.energyfuels.0c00967

Google Scholar

[11] S. De, S. Mishra, E. Poonguzhali, M. Rajesh, and K. Tamilarasan, International Journal of Biological Macromolecules, 145, 795–803 (2020).

DOI: 10.1016/j.ijbiomac.2019.10.068

Google Scholar

[12] J. Gu and Y.-L. Hsieh, ACS Sustainable Chem. Eng., 5, 1730–1737 (2017).

Google Scholar

[13] L. Dong, J. Wu, C. Zhou, C.J. Xu, B. Liu, D. Xing, G. Xie, X. Wu, Q. Wang, G. Cao, and N. Ren, International Journal of Hydrogen Energy, 45, 1578–1587 (2020).

DOI: 10.1016/j.ijhydene.2019.11.037

Google Scholar

[14] J. Peng, A.E.-F. Abomohra, M. Elsayed, X. Zhang, Q. Fan, and P. Ai, Journal of Cleaner Production, 230, 775–782 (2019).

Google Scholar

[15] X. Dai, Y. Hua, L. Dai, and C. Cai, Bioresource Technology, 293, 122043 (2019).

Google Scholar

[16] Z. Tang, Y. Liang, M. Wang, H. Zhang, and X. Wang, Industrial Crops and Products, 180, 114729 (2022).

Google Scholar

[17] M.A. Jamaludin, S.A. Bahari, M.N. Zakaria, and N.S. Saipolbahri, Journal of the Korean Wood Science and Technology, 48, 22–31 (2020).

Google Scholar

[18] B. Pang, T. Zhou, X.-F. Cao, B.-C. Zhao, Z. Sun, X. Liu, Y.-Y. Chen, and T.-Q. Yuan, Journal of Cleaner Production, 375, 134037 (2022).

Google Scholar

[19] P. Garside and P. Wyeth, Studies in Conservation, 48, 269–275 (2003).

Google Scholar

[20] X. Li, Z. Cai, J.E. Winandy, and A.H. Basta, Bioresource Technology, 101, 4662–4666 (2010).

Google Scholar

[21] J.C. Alcántara, I. González, M.M. Pareta, and F. Vilaseca, Materials, 13, 2138 (2020).

Google Scholar

[22] H. Xu, M. Dun, Z. Zhang, L. Zhang, W. Shan, and W. Wang, Polymers, 14, 2243 (2022).

Google Scholar

[23] F. Bilo, S. Pandini, L. Sartore, L.E. Depero, G. Gargiulo, A. Bonassi, S. Federici, and E. Bontempi, Journal of Cleaner Production, 200, 357–368 (2018).

DOI: 10.1016/j.jclepro.2018.07.252

Google Scholar

[24] S. Navaee-Ardeh, J. Mohammadi-Rovshandeh, and M. Pourjoozi, Bioresource Technology, 92, 65–69 (2004).

DOI: 10.1016/j.biortech.2003.07.006

Google Scholar