A Review on Oil-Soluble Polyisobutylene-Based Dispersant for Colloidal Stabilization

Article Preview

Abstract:

Oil soluble polymeric-based dispersants have been extensively used in engine oil lubrication formulation due to their inherent properties, such as modifiable viscosity, compatibility, and effectiveness. However, the underlying mechanism of how the dispersant stabilizes soot particles in engine oil is still not fully understood, and discovering this mechanism is crucial for engine oil formulation technology. This review discusses the interactions between colloidal particles induced by two PIBSA-derived dispersants, namely PIBSI and PIBSAE. The effectiveness of these dispersants in stabilizing colloidal particles in oil systems depends on the chemical functional groups present on the main chain. The spectrum of colloidal interactions, ranging from Derjaguin, Landau, Verwey and Overbeek (DLVO) to non-DLVO theory, is predominantly influenced by the equilibrium between dispersant concentration and the overall system viscosity. This phenomenon can eventually reverse colloidal stabilization and result in more serious issues, such as engine wear and tear.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1102)

Pages:

41-48

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Fakhriddin, The main factors influencing the formation of harmful substances in diesel engines, Universum: technical sciences (5-10 (98)) (2022) 62-64.

Google Scholar

[2] J.E, W. Xu, Y. Ma, D. Tan, Q. Peng, Y. Tan, L. Chen, Soot formation mechanism of modern automobile engines and methods of reducing soot emissions: A review, Fuel Processing Technology 235 (2022) 107373.

DOI: 10.1016/j.fuproc.2022.107373

Google Scholar

[3] J. Shi, X. Yi, J. Wang, G. Jin, Y. Lu, H. Wu, X. Fan, Carbonaceous soot dispersion characteristic and mechanism in lubricant with effect of dispersants by molecular dynamics simulation and experimental studies, Carbon 200 (2022) 253-263.

DOI: 10.1016/j.carbon.2022.08.043

Google Scholar

[4] C. Chen, W. Huang, Aggregation Kinetics of Diesel Soot Nanoparticles in Wet Environments, Environmental Science & Technology 51(4) (2017) 2077-2086.

DOI: 10.1021/acs.est.6b04575

Google Scholar

[5] H.A. Michelsen, M.B. Colket, P.E. Bengtsson, A. D'Anna, P. Desgroux, B.S. Haynes, J.H. Miller, G.J. Nathan, H. Pitsch, H. Wang, A Review of Terminology Used to Describe Soot Formation and Evolution under Combustion and Pyrolytic Conditions, ACS nano 14(10) (2020) 12470-12490.

DOI: 10.1021/acsnano.0c06226

Google Scholar

[6] A.A. Onischuk, S. di Stasio, V.V. Karasev, A.M. Baklanov, G.A. Makhov, A.L. Vlasenko, A.R. Sadykova, A.V. Shipovalov, V.N. Panfilov, Evolution of structure and charge of soot aggregates during and after formation in a propane/air diffusion flame, Journal of Aerosol Science 34(4) (2003) 383-403.

DOI: 10.1016/s0021-8502(02)00215-x

Google Scholar

[7] S.J. Harris, I.M. Kennedy, The Coagulation of Soot Particles with van der Waals Forces, Combustion Science and Technology 59(4-6) (1988) 443-454.

DOI: 10.1080/00102208808947110

Google Scholar

[8] S.F. Kamarudin, M. Jaafar, A. Abd Manaf, Y. Takamura, T. Masuda, Y. Yumoto, Performance Enhancement of Inkjet Printed Multi-Walled Carbon Nanotubes Inks using Synthetic and Green Surfactants, Advanced Materials Technologies 6(5) (2021) 2001026.

DOI: 10.1002/admt.202001026

Google Scholar

[9] V. Macián, B. Tormos, S. Ruiz, A. García-Barberá, An Alternative Procedure to Quantify Soot in Engine Oil by Ultraviolet-Visible Spectroscopy, Tribology Transactions 62(6) (2019) 1063-1071.

DOI: 10.1080/10402004.2019.1645255

Google Scholar

[10] S.M.A. Sharif Sheikhaleslami, F. Golestani-Fard, E. Khatibi, H. Sarpoolaky, Dispersion and stability of carbon black nanoparticles, studied by ultraviolet–visible spectroscopy, Journal of the Taiwan Institute of Chemical Engineers 40 (2009) 524–527.

DOI: 10.1016/j.jtice.2009.03.006

Google Scholar

[11] L. De Campo, A. Yaghmur, N. Garti, M.E. Leser, B. Folmer, O. Glatter, Five-component food-grade microemulsions: structural characterization by SANS, Journal of colloid and interface science 274(1) (2004) 251-267.

DOI: 10.1016/j.jcis.2004.02.027

Google Scholar

[12] A.R. Bhat, F.A. Wani, K. Behera, A.B. Khan, R. Patel, Formulation of biocompatible microemulsions for encapsulation of anti-TB drug rifampicin: A physicochemical and spectroscopic study, Colloids and Surfaces A: Physicochemical and Engineering Aspects 645 (2022) 128846.

DOI: 10.1016/j.colsurfa.2022.128846

Google Scholar

[13] Z. Cao, G. Ma, M. Leng, S. Zhang, J. Chen, C. Do, K. Hong, L. Fang, X. Gu, Variable-Temperature Scattering and Spectroscopy Characterizations for Temperature-Dependent Solution Assembly of PffBT4T-Based Conjugated Polymers, ACS Applied Polymer Materials 4(5) (2022) 3023-3033.

DOI: 10.1021/acsapm.1c01511

Google Scholar

[14] R.A. O'Connell, W.N. Sharratt, N.J.J. Aelmans, J.S. Higgins, J.T. Cabral, SANS Study of PPPO in Mixed Solvents and Impact on Polymer Nanoprecipitation, Macromolecules 55(3) (2022) 1050-1059.

DOI: 10.1021/acs.macromol.1c02030

Google Scholar

[15] H. Wang, B. Zhao, B. Wyslouzil, K. Streletzky, Small-angle neutron scattering of soot formed in laminar premixed ethylene flames, Proceedings of the Combustion Institute 29(2) (2002) 2749-2757.

DOI: 10.1016/s1540-7489(02)80335-2

Google Scholar

[16] Y. Lin, T.W. Smith, P. Alexandridis, Adsorption of a rake-type siloxane surfactant onto carbon black nanoparticles dispersed in aqueous media, Langmuir 18(16) (2002) 6147-6158.

DOI: 10.1021/la011671t

Google Scholar

[17] T. Rajasekhar, G. Singh, G. Kapur, S. Ramakumar, Recent advances in catalytic chain transfer polymerization of isobutylene: a review, RSC Advances 10 (2020) 18180-18191.

DOI: 10.1039/d0ra01945c

Google Scholar

[18] D. Atkinson, A.J. Brown, D. Jilbert, G. Lamb, Formulation of Automotive Lubricants, in: R.M. Mortier, M.F. Fox, S.T. Orszulik (Eds.), Chemistry and Technology of Lubricants, Springer Netherlands, Dordrecht, 2010, pp.293-324.

DOI: 10.1023/b105569_9

Google Scholar

[19] C.C. Colyer, W.C. Gergel, Detergents/dispersants, Chemistry and technology of lubricants, Springer1994, pp.62-82.

DOI: 10.1007/978-1-4615-3272-9_3

Google Scholar

[20] S. Sukirno, D. Febriantini, A.S. Nugraha, B. Purnomo, Optimization and characterization of facile synthesis of pentaethylenehexamine-terminated polyisobutylene, RASĀYAN Journal of Chemistry (2021) 40-46.

DOI: 10.31788/rjc.2021.1456550

Google Scholar

[21] H. Sun, R. Jiao, G. An, H. Xu, D. Wang, Influence of particle size on the aggregation behavior of nanoparticles: Role of structural hydration layer, Journal of Environmental Sciences 103 (2021) 33-42.

DOI: 10.1016/j.jes.2020.10.007

Google Scholar

[22] H. Mateos, G. Palazzo, Colloidal stability, Colloidal Foundations of Nanoscience, Elsevier2022, pp.57-83.

DOI: 10.1016/b978-0-12-822089-4.00001-5

Google Scholar

[23] A. Langford, M. Bruchsaler, M. Gupta, 8 - Suspension properties and characterization of aluminum-adjuvanted vaccines, in: P. Kolhe, S. Ohtake (Eds.), Practical Aspects of Vaccine Development, Academic Press2022, pp.225-266.

DOI: 10.1016/b978-0-12-814357-5.00008-8

Google Scholar

[24] D.H. Napper, Steric stabilization, Journal of Colloid and Interface Science 58(2) (1977) 390-407.

DOI: 10.1016/0021-9797(77)90150-3

Google Scholar

[25] H. Abdel-Hameed, N. Ahmed, A. Nassar, Some Ashless Detergent/Dispersant Additives for Lubricating Engine Oil, 2015.

DOI: 10.1108/ilt-05-2015-0065

Google Scholar

[26] F. Matter, A.L. Luna, M. Niederberger, From colloidal dispersions to aerogels: How to master nanoparticle gelation, Nano Today 30 (2020) 100827.

DOI: 10.1016/j.nantod.2019.100827

Google Scholar

[27] S. Asakura, F. Oosawa, On interaction between two bodies immersed in a solution of macromolecules, The Journal of chemical physics 22(7) (1954) 1255-1256.

DOI: 10.1063/1.1740347

Google Scholar

[28] Y.-J. Yang, D.S. Corti, E.I. Franses, Effect of Triton X-100 on the stability of titania nanoparticles against agglomeration and sedimentation: A masked depletion interaction, Colloids and Surfaces A: Physicochemical and Engineering Aspects 516 (2017) 296-304.

DOI: 10.1016/j.colsurfa.2016.12.026

Google Scholar

[29] J. Vialetto, M. Anyfantakis, Exploiting Additives for Directing the Adsorption and Organization of Colloid Particles at Fluid Interfaces, Langmuir 37(31) (2021) 9302-9335.

DOI: 10.1021/acs.langmuir.1c01029

Google Scholar

[30] L.R. Rudnick, Lubricant Additives: Chemistry and Applications, CRC Press2017.

Google Scholar

[31] Y. Kim, J. Kim, D.H. Hyeon, J.S. Han, B.-H. Chun, B.H. Jeong, S.H. Kim, Development of PIBSI type dispersants for carbon deposit from thermal oxidative decomposition of Jet A-1, Fuel 158 (2015) 91-97.

DOI: 10.1016/j.fuel.2015.05.008

Google Scholar

[32] J. Barker, J. Reid, C. Snape, D. Scurr, W. Meredith, Spectroscopic studies of internal injector deposits (IDID) resulting from the use of non-commercial low molecular weight polyisobutylenesuccinimide (PIBSI), SAE International Journal of Fuels and Lubricants 7(3) (2014) 762-770.

DOI: 10.4271/2014-01-2720

Google Scholar

[33] K. Vyavhare, S. Bagi, M. Patel, P.B. Aswath, Impact of diesel engine oil additives–soot interactions on physiochemical, oxidation, and wear characteristics of soot, Energy Fuels 33(5) (2019) 4515-4530.

DOI: 10.1021/acs.energyfuels.8b03841

Google Scholar

[34] Z. Pawlak, B.E. Klamecki, T. Rauckyte, G.P. Shpenkov, A. Kopkowski, The tribochemical and micellar aspects of cutting fluids, Tribology International 38(1) (2005) 1-4.

DOI: 10.1016/j.triboint.2004.04.004

Google Scholar

[35] R. Esparza, M. Ba, E. Pérez, A. Gama Goicochea, Importance of molecular interactions in colloidal dispersions, Advances in Condensed Matter Physics (2015).

DOI: 10.1155/2015/683716

Google Scholar