Analysis of DC Conductivity and I-V Characterization of Nanocrystalline Copper Ferrite Sample at and above Room Temperature

Article Preview

Abstract:

Spinel copper ferrite nanoparticles have wide spread technological applications. Polycrystalline copper ferrite nanoparticles is prepared by sonochemical method. The structural property is investigated by X-ray diffraction study, which reveals cubic spinel structure of copper ferrite NPs with average crystalline size of 20 nm. The temperature variation of DC conductivity of copper ferrite nanoparticles is studied. The conductivity is observed to increase with temperature which implies semiconducting nature of copper ferrite. The Mott study reveals that conduction process is three dimensional in present case. Again, p-n junction formation in the ferrite system is observed from the current voltage (I-V) study. This study further shows that the trap height increases with temperature. Ideality factor with values greater than 1 has been observed in present case.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1103)

Pages:

121-128

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.K. Selven C.O. Augustin, L.J. Berchmans, R. Saraswathi, Combustion synthesis of CuFe2O4, Mater.Res.Bull.38(2003) 41-54.

DOI: 10.1016/s0025-5408(02)01004-8

Google Scholar

[2] S. Dabagh, A.A. Ati, S.K. Ghoshal, S. Zare, R.M. Rosnan, A.S. Jbara, Z. Othaman, Cu2+ and Al3+ substituted Co ferrite: Structural analysis, morphology and magnetic properties, Bull. Mater. Sci. 39 (2016)1029.

DOI: 10.1007/s12034-016-1233-8

Google Scholar

[3] S.Dabagh, K. Chaudhary, Z. Haider, J. Ali, Study of structural phase transformation and hysteresis behavior of inverse-spinel α-ferrite nanoparticles synthesized by co-precipitation method, Results Phys. 8 (2018)93.

DOI: 10.1016/j.rinp.2017.11.033

Google Scholar

[4] E.Z. Hegazy, I.H.A. Ei-Maksod, A.M. Ibrahim, S. EI-Sayed EI-Shafay, New insights about the formation of copper ferrite: In situ X-ray diffraction study, Bull. Natl. Res. Cent. 9(2018) 42.

DOI: 10.1186/s42269-018-0010-9

Google Scholar

[5] S.Dabagh, A.A. Ati, R.M. Rosnan, S.Zare, Z. Othaman, Effect of Cu-Al substitution on the structural and magnetic properties of Co ferrites, Mater. Sci. in Semicond. Process. 33 (2015) 1-8.

DOI: 10.1016/j.mssp.2015.01.025

Google Scholar

[6] D.L. Navgare, V.B. Kawade, U.B. Tumberphale, S.S. Jadhav, R.S. Mane, S.K. Gore, Superparamagnetic cobalt-substituted copper zinc ferrialuminate: Synthesis, morphological, magnetic and dielectric properties investigation. J. Solgel. Sci. Technol. 93 (2020)633.

DOI: 10.1007/s10971-019-05106-z

Google Scholar

[7] B.Bhujun, Michelle T.T. Tan, Anandan S. Shanmugam, Evaluation of aluminium doped spinel ferrite electrodes for supercapacitors, Ceram. Int. 42 (2016)6457.

DOI: 10.1016/j.ceramint.2015.12.118

Google Scholar

[8] V.K. Surashe, V.Mahale, A.P. Keche, R.C. Alange, P.S. Aghav, R.G. Dorik, Structural and electrical properties of copper ferrite (CuFe2O4) NPs, J. Phys. Conf. Ser. 1644 (2020) 012025.

DOI: 10.1088/1742-6596/1644/1/012025

Google Scholar

[9] B. Mondal, M.Kundu, S.P. Mandal, R.Saha, U.K. Roy, A.Roychowdhury, D.Das, Sonochemically synthesized spin canted copper ferrite nanoparticles for heterogeneous green catalytic click chemistry, Acs Omega.4 (2019) 13845-13852.

DOI: 10.1021/acsomega.9b01477

Google Scholar

[10] B.V. Rao, P.V.LNarayana A.D.P. Rao, Impact of Mo6+ on resistivity of copper ferrite, J. Mag. Mag. Mater. 431 (2017) 59-61.

Google Scholar

[11] M.H. Abdullah, A.N. Yusoff, Complex impedance and dielectric properties of an Mg-Zn ferrite, J.Alloys.Compd. 233 (1996) 129-135.

DOI: 10.1016/0925-8388(96)80044-2

Google Scholar

[12] B.J. Sarkar, J. Mandal, M. Dalal, A. Bandyopadhyay, B. Satpati, P.K. Chakrabarti,Room temperature antiferromagnetic ordering in chemically prepared nanocrystalline Co-doped neodymium oxide (Nd1.90Co0.10O3-δ), J. Elec. Mat. 47 (2018) 1768 - 1779.

DOI: 10.1016/j.jallcom.2018.04.080

Google Scholar

[13] M.I. Klinger, A.A. Samokhvalov, J. Phys. Status Solid B 79 (1977) 9.

Google Scholar

[14] P.P. Hankare, K.R. Sanadi, R.S. Pandav, N.M. Patil, K.M. Garadkar, I.S. Mulla, Structural, electrical and magnetic properties of cadmium substituted copper ferrite by sol-gel method,J.alloys Compd. 540(2012) 290-296.

DOI: 10.1016/j.jallcom.2012.06.018

Google Scholar

[15] T. Uma, T. Mahalingam, U. Stimming, Conductivity and thermal studies of solid polymer electrolytes prepared by blending polyvinylchloride, polymethylmethacrylate and lithium sulphate, Mater. Chem. Phys. 85 (2004) 131-136.

DOI: 10.1016/j.matchemphys.2003.12.012

Google Scholar

[16] S.M. Sze, Physics of Semiconductor Devices2nd ed. Wiley, New York, 1981.

Google Scholar

[17] E. Staryga, G.W. Bak, Relation between physical structure and electrical properties of diamond-like carbon thin films,Diam.Relat. Mater. 14 (2005) 23-34.

DOI: 10.1016/j.diamond.2004.06.030

Google Scholar